Republic of Yemen
Ministry of High Education
& Scigntific Research

Al -Pavapr lIniyarsity

Faoulty of Hiplar Studdias AL-RAYAN UNIVERSITY

ENHANCEMENT OF OPERATING SYSTEM DATA

TRANSFER RATE FOR MANY SMALL FILES

Thesis submitted to Al-Rayan University to complete the requirements of

obtaining a Master’s degree in Information Technology

Magid Abdulla Basmael
Magid Abdulla Basmael

Supervisor

Dr. Saeed Mohammed Baneamoon

Dr. Saeed Mohammed Baneamoon

- 1441 / » 2020

» 1442 / a 2021

Approval of the Proofreader

I certify that the master's dissertation titled (ENHANCEMENT
OF OPERATING SYSTEM DATA TRANSFER RATE FOR
MANY SMALL FILES) submitted by the student Magid
Abdulla Basmael has been linguistically reviewed under my
supervision and has become in scientific style and clear from
linguistic errors and for that I sign.

Proofreader: Abdullah Amer Al-kathiri
Academic Title: Assistant Professor
University: Hadhramout Universi

gtrsventoe .

Signature :

Date: 25/6/20

Approval of the Scientific Supervisor

| certify that the master’s dissertation titled, (ENHANCEMENT OF
OPERATING SYSTEM DATA TRANSFER RATE FOR MANY SMALL FILES)
submitted by the student Magid Abduila Basmael has been completed in
all its stages under my supervision and so | nominate it for discussion.

Proofreader: Associ essor Dr. Saeed Mohammed Baneamoon
Signature: ..; ; 2.

|
Date: 30/6/2020

The Discussion Committee Decision

Based on the decision of the President of the University No. () in the
year regarding the nomination of the committee for discussing
the master's thesis entitled (ENHANCEMENT OF OPERATING SYSTEM
DATA TRANSFER RATE FOR MANY SMALL FILES) for the researcher Magid
Abdulla Basmael We, the head of the discussion committee and its
members, acknowledge that we have seen the aforementioned scientific
thesis and we have discussed the student in its contents and what related
to it.

Chairman of the Committee

Associate Professor Dr. Saeed Mohammed Baneamoon

(<
SIS oot S TN (. IRDU—
Committee member Committee member
Associate Professor Assistant Professor

Dr. Naziha Mohammed Al-idroos Dr. Mohammed Abdullah Bamatraf

™ A i
Signature: ...« /&,Jéz) oees SlgNAture: >&

Acknowledgment

I would like to express my gratitude to my supervisor Dr. Saced Mohammed
Baneamoon for the useful comments, remarks and engagement through the learning
process of this master thesis. Furthermore, I would like to thank my friends Fahd Bashen
and Ali Basunbol for infroducing me to the topic as well for the support on the way. Also, I
would like to thank all persons, who have willingly shared me their precious time. I will be

grateful forever for your love.

Enhancement of Operating System Data transfer Rate for Many Small
Files

Abstract

Computer 1s a great machine, used in various fields, helps process much data and
execute several tasks in a short time. One of the main and frequent tasks is the data transfer
from a source to a destination. In the past, computer machines were slow and processed
very little data. So, the impact of computer operating system's data transfer rate was not a
big problem. Later, the demand for data has increased tremendously in all fields, and even
the computer itself and its operating system perform many tasks internally. So, this
increasing of usages and processes on data has generated some challenges to the operating
system. The main problem is the effect of the operating system data transfer rate due to size
changes and the number of files that would be transferred, specifically many small files. So,

this problem has led to a time wastage and resources overhead.

The aim of this research is to highlight and analyze the problem of affecting data
transfer rate of the operating system due to many small files transfer and provide a new

proposed technique to improve it.

This research proposes a new technique to transfer data locally for many small files,
based on the principle of merge and on-the-fly extraction without any modifications to the
operating system architecture or file system hierarchy, in order to reduce very many
operations that the operating system performs during the file transfer process. On the other
hand, this research approach proposes an improvement in term of the data transfer rate
locally for many small files, resulting to better operating system performance and thus an

improvement of the user performance.

There are solutions that enhance small file’s issues, but many of them are for
distributed systems, and if not, no one 1s for “data transfer rate locally”. The research
approach depends on experiments, analysis, evaluation, and presents a technique that

mmproves the operating system's data transfer rate locally for many small files from a source

to a destination. The result of the new proposed technique proves that it enhances OS’s data

transfer rate of many small files and its efficiency.

We certify that we have read the present work and that in our opinion it is
fully adequate in scope and quality as thesis towards the partial fulfillment

of the Master Degree requirements in

Information Technology

From
College of Higher Studies
Date: 8/7/2021

Supervisor:

1. Dr. Saeed Mohammed Baneamoon
Assistant Prof. of Department of Computer Engineering,
College of Engineering & Petroleum, College of Computers &

Information Technology, Hadhramout University

Signature:

Table of Contents

AC RS PR oo evrine st sneme b duses s s ke e e ednse b poroienth A
PAEIRTRICTL oo susossanoin s e R AR R B
LB OISR . tcvmniian anicasiadokios soibsssmsmosss SR A R S A R S
LSO TABIER s R R R S A S TR R 3 H
LSt 6 BISUIRE oo ocemmnnm i s s s e s i e s e e s R e
10 ADGEaANEN el sranmsades o b ansel o
1 TCHAPTER ONE: ENTRODUE TN im0 s o s svasiimmngg
1l BREOdICEOT: kool s e s e i 2
L O I A A oo o S S eSS 2
L3 R oot Al BB scunnboksusinmsmanbrnmsanmnsmamisimmmanm s s 3
L ACIDECIINES, oo snmenme st s il B 3
135 ‘Scapeamnd JOmiaons bl vl st da e sl v sutesdeio s 4
1.6 Research APProach.........coocooiomii i e 4
1.6.1 Problem Identification ...
1.6.2 Analysis of Current Techniques ..o
1:63. - Proposed APPIeathEs . . oovaenmesnsnsessasms s snssssmme s as
1.6 Tiplehiehiiiii. ol wpammeadnmimmastamsseussaesbses o
105 "TIABSICE BB i oo s s s s e s o i s e s
106, TEBHAY i erenenbicnisnsmusnsmsenlie st ineded e messs
107 BRI o s o s s e i e o e S S oA
L7 ReReaich COMMIDMIONS . ..cconmmmmmsmtsissssm s s s o e s s s sedvnss 6
LB SUTCTREC OF ORI oo om0 a8 s s s s A 6

2 CHAPTER TWO: BACKGROUNED ccciiiuiiomussuien somsvuss s s sssoni ioaissbesasmsissasseta pouns 7

2.1 IITOAUCTION. . ..o e 8
2.2 Operating System Input/Output Request............cooooiii oo 8
23 Operanng Syeleni Dati TREIer EXSCHHON oo s sommie s sy 13
2. Catinling 0SS Dierdbons of File THSIE ooy 15
25 Chapler SHIAY - oo smmmissebnspimbse s Suboussedomde sy 20
CHAPTER THREE: LITERATURE REVEIWiinenniarcesiesecsesenesassssasasssnens 22
3.1 ITOOUCIION. ... consinssunesnamsssmmemsserrssensnsrnes rssrmensin s s s s s v s i A S e 23
3.2 Related WOTKS ..o 23
3.3 Critical Evaluation of Existing Approachesccccooooiieiioeie e 27
3.4 RemMATKS ..o 33
3.5 Chapler BUmINATY . oo 34
CHAPTER FOUR: DESIGN AND IMPLEMENTATION ...cccceturessiessessusnisassssasassanans 35
A1 INITOAUCTION. e e e e e 36
B B | 36
4.3 Proposed TeChIIQUE.........oooiieeiee e et ae e eaeeeane e eenes 37
4.4 Evaluation of The Proposed Technique............ooooeieiiee e 39

4.4.1 Evaluation of Enhancement of Data Transfer Time............c..ccocccoeenne 39

4.42 Evaluation of Enhancement of Data Transfer Rate Efficiency 40
4.5 Proposed Algorithm for Choosing Suitable Technique...................cocoooiiiiiiiii 43
4.6 Evaluation of Proposed Algorithm for Choosing Suitable Technique 45
4.7 Coding AIGOTIERIN ..o e e 45
4.8 Comparison of Results With Previous Works ... 46
4.9 Chapter SUINIMATYooioie oo e et e e e e e e eneeeaes 47

CHAPTER FIVE: CONCLUSION AND FUTURE WORK.......cirreeenenneresnsnensenens 49

5.1 ConCIUSION ..o..ooe e 50
5.2 Limitation of The Proposed Approaches..............cccooooooioiiiiiiee e al
53 FUE WOTK oo i s o i i e s e e e e S e e B R e 52
REICICIEER o i s S T S R A S S T 53

List of Tables

Table No. Title Page
Table 2.1 Number of Operations of One File Transfer Task 18
Table 3.1 Critical Analvasiof Relevant Spproaches......coxomes oo 29
Table 4.1 Data Transfer Time of Proposed and OS's Techniquesccccoeeenee... 38
Table 4.2 Efficiency of Data Transfer Rate of Proposed Technique 40

List of Figures

Figure No. Title Page
Ergire 1.1 Flowehan of Rescaroh APproaeh. o inememion s iiaebehbsioanbl 4
Eiviie. Ll pcEiine SYSIEN oo e e s e 9
Figure 2.2 Operating System’s Interfacesccooovmeoeee e e, 10
Figure 2.3 I/O’s Operations of an “Open a file” Taskcccoooomeoieeiieeeie e, 11
Fipure 24 System Calls Tor a Data Transfer Taskcovvnnannsnnan 12
Eipnire 2.5 ‘Three Modes of a Device IO ..co.vvvnnnnmmnmsinisinsisse 13
Figure 2.6 Interaction Between Operating System and Devicec.ccooeeevneenne... 14
Fipnre 2.7 Low-level Interactions of a DevVIce.........cunvmmnmsesinsiss 15
Figure 2.8 Complete Communication Between User and Storage Device 17
Bipare 2 9'Windows O3 Components: [31]-..cvcvvivnnnienansdonin e 20
Figure 4.1 Principle of Proposed Technique.................cooooooiiiiii e, 37
Figure 4.2 Efficiency of Data Transfer Rate Accordingto Size 41
Figure 4.3 Count of Disk Data Transfer Read/Write of Windows OS 42
Figure 4.4 Count of Disk Data Transfer Read/Write During Merging 42
Figure 4.5 Count of Disk Data Transfer Read/Write During Extraction 42
Figure 4.6 Change of Time Efficiency According toFile Size........................... ... 43
Figure 4.7 Algorithm Flowchart for Choosing Appropriate Technique 44
Figire 1.8 Scieen Shot ol e Alpehthin Code.....coomnmumcmnnmnsnsass 46
Fipiiie <1 9 Cotiparisenor Dala Transler TIle . oo andinddtniimpon i 47

CPU

DIR

GB

HDFS

HDD

IRP

MB

oS

PC

SRB

List of Abbreviations

Application Programming Interface

Byte

Bit

Central Processing Unit

Data Transfer Rate

Fast File System

Gigabyte

Hadoop File System

Hard Disk Drive

Input/output Request Packet

Kilobyte

Megabyte

Operating System

Personal Computer

Random Access Memory

Storage Request Block

CHAPTER ONE: INTRODUCTION

1.1 Introduction

In the early digital computing, people were penetrating with a few amounts of data,
and there were less problems affecting data transfer. Later, requesting data drastically

mcreased.

Technology moved on, so speeds and volumes spread vertically and horizontally. In
modern technology, speeds and volumes are beyond imagination. The average annual
personal computer data traffic worldwide from 2015 to 2022 would raise up from 0.4 to 1.3
exabytes [1], and based on Statcounter, the desktop Windows 10’s version market share

worldwide 1s 70.98% [2].

A search was done on Windows 10’s “C:\” home volume, there are 414142 files up to
256KB. So, it can be said, that even the operating system contains internally many small

files to work properly.

On a PC, when transferring big-size files locally from a source to a destination, the
data transfer rate 1s adequately fine. In contrast, if many small-size files are transferred, the

operating system data transfer rate 1s so negatively affected [3].

There are contributions that have improved big data transfer rates on both, personal
computer and distributed architecture. Hence, this thesis will focus on the challenge of
operating system data transfer rate for small files in order to enhancement the performance

of operating system.

1.2 Motivation

Even on current computers, there is a lack in the operating system data transfer rate
when many small files are transferred locally from a source to a destination. In such a case,
this means a time delay for users. Also, the operating system itself contains many small
files to work properly, and all of those may overhead system resources. Also, all previous

works focus only on distributed systems, and does not focus on local systems. So, this

problem really needs to be dug into the reasons behind, and try to contribute some solution

for this mteresting thing.

1.3 Problem Statement

Changes of files’ sizes affect the operating system data transfer rate. Therefore, when
transferring many small files locally from any source to any destination using a PC, the
operating system does not function optimally with the data transfer rate. There have been
contributions to reducing this problem and improving performance, but they are very few in

the area of personal computer operating systems and need more improvements.

In the past, people used to deal with little data and the problem was not apparently
negatively affected for the operating system. But later, as a technology performance
consequence, the number of personal computers increased very quickly and spread to be
used for different purposes, hence the data usage increased, and this resulted in too much
data. Among these data, there are many small files, the challenge in which poor handling

by the operating system leads to time waste and resources overburden.

The general purpose of this research i1s to find a way to improve the operating
system’s data transfer rate for many small files locally without straining system resources.
Also, the root of the problem will be tracked to see the possible causes underneath.
Statistical and experimental method will be used, by appropriate tools to accomplish the

experiments to conduct evaluation and comparison.

1.4 Objectives

In this thesis, a new proposed technique will be used as a development of data transfer
rate of PC’s operating system, as well as the analysis of the operating system mechanism of
transferring files to determine the weakness reasons when transferring many small data

locally.

This research addresses some issues in software development. The first issue is

analysing the problem of weaknesses of data transfer rate of the operating system for many

small data. The second issue i1s unsuitability of both techniques all the time, neither the
proposed technique nor the operating system technique. Therefore, the objectives of the
research relate to improving the efficiency of data transfer rate for small-size files in

operating system. In more detail, the objectives are:

1) To propose a new technique that will improve Operating Systems data transfer rate
of the small size files without system resources overburden.

2) To suggest an algorithm that decides - before transfer process - which technique 1s
suitable to be applied to files being transferred, the proposed data transfer technique
or using the traditional Operating System’s technique to benefit the appropriate

mechanism after decision.

1.5 Scope and Limitations

The research is specific for the Operating Systems’ data transfer rate locally. Any
other environments - even in many cases, the problem does exist - are out of scope, such as
cloud computing, distributed systems or any other networking environments. It aims to the
immprovement of data transfer rate of small files less than 1MB and applied on Windows

10°s OS.

1.6 Research Approach

In order to carry out the new proposed technique, research approach of this thesis

will be followed at stages as the flowchart in Figure 1.1.

Problem Identification NN Research Approach)

(Analysis of Current Techni ques”f' Proposed Approaches)

C Transfer Rate)- Im plem entati on)

G Test:g ‘ Evaluation)

Figure 1.1 Flowchart of Research Approach

1.6.1 Problem Identification

At this stage, the problem of the weaknesses of the operating system data transfer rate
locally for small files will be identified clearly, addressing the root cause of the problem

and including the problem’s effects on businesses.

1.6.2 Analysis of Current Techniques

This stage 1s to put this research on a right place. So, current techniques that present

enhancement of data transfer rate of an operating system locally will be analysed.

1.6.3 Proposed Approaches

In order to introduce a solution for enhancing operating system's software weaknesses
when transferring many small data, this stage will introduce a demonstration of a new
proposed technique to reduce the reasons impact for this vulnerability and improve the

performance of the operating system data transfer rate for many small files.

1.6.4 Implementation

This stage will detail the implementation steps for accomplishment of experiments of the
new proposed technique to achieve the objectives of the research. So, quantitative approach
1s introduced by using various tools for experiments test, analysis and evaluation.

1.6.5 Transfer Rate

Transfer rate 1s quantity that is transferred repeatedly from a source to a destination in
a period of time. In this research, it i1s the files that are transferred every second. The
transfer rate of the operating system for many small files is still weak. Therefore, this stage
1s to design a model for enhancing the issue of many small files data transfer rate poor

efficiency of an operating system.

1.6.6 Testing

At this stage, the new model will be tested on groups of small files to determine its

efficiency and the file size range it operates on.

1.6.7 Evaluation

The operating system data transfer mechanism 1s fine for big data. But it has software
weaknesses 1 case of small files, because it does not have enhanced mechanisms to
minimize the many operations of a file transfer processes, neither minimizing the
operations themselves for one file nor minimizing the operations for many files. So, at this
stage, the new proposed technique will be evaluated and compared to other similar

proposed techniques, presenting their strengths and weaknesses.

1.7 Research Contributions

Computer data transfer rate is critical, so enhancing it 1s a challenge either for local
environments or distributed environments. So, the thesis will introduce the following

contributions:

1) The thesis 1s considered as an opportunity to present the weaknesses of the data
transfer rate mechanisms of a computer operating system.

2) The optimization for operating system data transfer rate is simple, efficient, reduces
time and increases productivity.

3) The use of the suggested algorithm that combine both techniques the proposed
technique and the operating system technique based on file sizes before starting the

transfer process leads to more flexibility.

1.8 Structure of Thesis

The thesis 1s organized into five chapters. Chapter 2 introduces a whole 1dea of impact
of sizes change and many small data on the transfer rate of the operating system. Chapter 3
provides an overview of the previous researches’ contributions related to the problem
stated. Chapter 4 presents the experiments, analysis and evaluation. Chapter 5 introduces

the conclusion, limitation and future work.

CHAPTER TWO: BACKGROUND

2.1 Introduction

In regular daily life, and whatever device used, whether it 1s a computer, a mobile, or
other, data is often transferred locally from a place to another. For example, the process of
copying files from a folder to another folder, from a volume to another or even from a hard
disk to a USB storage device, etc. When transferring files locally from one place to another
using a computer, it takes time, which may be very short and may be very long based on
files’ sizes and number. For example, using a PC, when transferring 20 files from volume
D to a USB storage device, if the total size of the files is 2 megabytes, and the time spent in
the transfer process 1s 20 seconds, then the data transfer rate in this case could be expressed

n two terms as follows:
1-Data transfer rate = 2MB ~+ 20 seconds = 0.1MB/s.
So, in this case, every second it transfers 0.1 megabytes.
2-File transfer rate = 20 files + 20 seconds = 1file/second.

It means that every second, one file is transferred, and this term will be used because

it 1s appropriate for this thesis.

Because the operating system data transfer rate i1s affected due to many transferred
small files, so, it implies that the “file transfer rate” changes according to the change of
their sizes and number, even if the data transfer rate of the PC has the same value. So, the
time of transferring 20 files the total size of them i1s 2000 KB differs from the time of
transferring 40 files the total size of them 1s 2000 KB even if the PC data transfer rate is the

same [3].

2.2 Operating System Input/Output Request

To use a computer easily and correctly, i1t 1s powered by a so-called an “operating
system”. The operating system i1s a software which acts as an interface between the end user
and computer hardware as shown in Figure 2.1. So, to access resources of a computer to

use them for various tasks easily without errors, such as transferring data among storage

8

devices, printing a paper on printing devices or any other task resource, the operating
system carries out those tasks based on the user’s operation instructions. Most of the
operations are hidden from the user, so the user executes various tasks seamlessly without

having to know or learn complicated details of software [4].

Computer User |

Operating System

Hardware

Figure 2.1 Operating System

To use the computer resources seamlessly, the computer operating system 1s divided
mto interfaces as shown in Figure 2.2, each of which provides operations from/to
upper/lower interface. Application interface exists between the end user and Call interface.
It provides simple data and information, and easy graphics shown on the screen to the end
user as a mouse pointer, menus and windows, and isolates the user from complicated

details of software that helps the resources to operate correctly [5].

Call interface sits between Application interface and Service interface. It provides an
mterface to the services made available by an operating system. So, it 1s nothing else than a
“call” to execute a corresponding service/services for a task accomplishment coming from

Application interface instructed by the end user [5].

Service interface 1s placed between Call interface and the hardware (resources). It 1s

considered low-level because it 1s closer to the resources. Think of Service interface as an

executive manager that executes the operation instructions coming from Call interface

through the resources [5].

[Computer User

Application Interface

Call Interface

Service Interface

Hardware

Figure 2.2 Operating System’s Interfaces

From above, 1t can be seen, that when a user executes a task by a computer, the task
operations must pass through all of the OS’s interfaces. For example, to transfer data, a user
must use an Application interface such as a “copy data” interface from a source and a
“paste data” interface to a destination, and consequently, the operating system is instructed
to execute the data transfer task. So, the Application interface picks up the appropriate
“call/calls” from Call interface. In the example, “File Management Call, “Device
Management Call” and/or other calls are directed to the Service interface, which in turn
executes the data transfer logically by the appropriate service/services to. In the example,
“File Management Service” 1s used to instruct the resources (source and destination) to

execute the data transfer physically from one to another until complete.

10

Input/output processes are essential and complicated operations of an operating
system. They are processed by so-called “IRP” requests, which are I/O Manager
responsibility in case of Windows OS [6]. So, from Figure 2.3, it can be seen how many

and complex the I/O operations. Also, it shows that only an “open a file” task I/O request

passes through ten main phases.

/*Subsystemz\

G) {eturn handle open @

and/or (file object)
NT STATUS request

user mode

kernel mode 1ook up object name

Object
Manager

/O System Servlces/< (@ .. -check access rights
Security
/0 Manag&

@ locate .

file object - :

file system

) _@.allocata
IRP ol _ file system

/. g @ call appropriate /

1 | VO stack - drivers with IRP
@ location i
free IO stack | v driver
IRP location | /~[. . “-. carry out

B " requested

operation

-
-

@ copy /O Status
to subsystem
address space

tfbrnplate operation,
return IRP with
/O Status

device driver)

/

mass-storage devices

Figure 2.3 I/O’s Operations of an “Open a file” Task

From above, it can be seen that any task would be executed using a computer, it must

pass through many interfaces forth and back. This is called “layered OS” approach [5].
11

To see the negative effects of the layered approach of the operating system because of
many interfaces and operations, a file transfer from a source to a destination is a sample
task, which 1s now viewed from the perspective of only the system calls which have been
demonstrated in this section. From Figure 2.4, it can be seen ten system calls to execute a
file transfer task from a source to a destination. These are not all calls, they are for

demonstration purposes, and in the real world, there are many calls [5].

Source Destination
input file output file

1 Prompt input file name

1

2 Prompt output file name

3 Open input file

4 | If input file does not exist, abort

3 I Create output file

2

6| If file exists, abort

7 Read from input file
Loop until fails
or complete
8 Wirite to output file
9 Close output file
10 Terminate normally

Figure 2.4 System Calls for a Data Transfer Task

12

2.3 Operating System Data Transfer Execution

The behavior of change of file transfer rate of the operating system locally according
to change of file size and number 1s a challenge, and there must be something behind [3].
This will be researched and the origin of this problem will be investigated more. This will
be achieved by tracking how the file 1s transferred from a source to a destination logically

and physically within the operating system.

To successfully perform a file transfer task, it goes through three (often considered
two, but m this research, it will be considered three for thesis purposes) main steps by the

operating system called “modes” [7], as shown in Figure 2.5:

1) User Mode.
2) Kermel mod.
3) Physical mod.

| User Mode | |

- |
Operating |
System : |
: Kernel Mode | :

"R — ——
p— =y

Devices | | Physical Mode | |
L

Figure 2.5 Three Modes of a Device I/O

For example, if a user is transferring a file from a source to a destination, the user
mteracts simply only with the user mode (1.e. file copy/paste process interfaces). The rest of
the file transfer task processes is hidden and handled automatically by the kernel mode and

the physical mode without user interference. The physical mode performs the processes to

13

store data physically. The kernel mode is intermediate mode between the user mode and the
physical mode. In the case of file transfer, the kemel mode transforms the file transfer
operation mstructions (1.e. file copy/paste operation instructions) from the user with the
help of the user mode to the storage device with the help of the physical mode and monitors

the file transfer process until successful file transfer completion [7].

Furthermore, each of those modes has more intermediate layers. Part of them i1s to
deal with the data and the rest 1s for control. So, the more those control operations increase,

the more the time delay they waste and the more the resources they consume [3].

Figure 2.6 shows that the operating system communicates to the device via a so-called
a “driver”. The driver 1s closer to the device and 1s used to instruct the device physically,
according to conditions and criteria specified by an operating system. For example, when a
file 1s copied from a hard disk drive to a USB storage device, the user uses the appropriate
application interface for that. Then, the operating system communicates with the storage
device via the appropriate device driver through appropriate system calls and services. So,

the driver 1s often considered a low-level, closest to the physical layer [5] [8].

‘ Application l

‘ Operating System

‘ Driver

‘ Device

Figure 2.6 Interaction Between Operating System and Device

14

If Figure 2.6 1s more analyzed, the process becomes more complicated as shown in
Figure 2.7. It 1s shown that the driver consists of parts, each of which performs a specific

operation [8].

Filter driver for USB
storage device

l Function driver for USB

storage device

Function driver for USB
host controller

USB host controller

USB device

Figure 2.7 Low-level Interactions of a Device

So, 1n this research, the approximate number of file transfer operations locally will be
presented to ensure that the more those operations, definitely leads to more time delay and

resources COIlSllI’IlptiOIl.

2.4 Counting OS’s Operations of File Transfer

This research will show the effect of change of size and number of transferred files on
the operating system's data transfer rate. So, this research will track the operations that the

operating system performs to transfer one file locally from a source to a destination to

15

count them. To do that, Windows OS 1s chosen for its popularity [2]. Unfortunately,
Windows OS has a hurdle, it is closed source system and dealing with 1t 1s somewhat

difficult [5].

The mstantaneous input/output operations of data being transferred from a source to a
destination are controlled by 6 layers as shown in Figure 2.8. When a file is to be
transferred locally from a source to a destination, a computer is instructed by a simple
Application interface to select a file which a source contains, and a destination to which the
selected file would be transferred. Then, Application interface provides the appropriate
operation instructions of transferring the file to the API interface to provide the appropriate
file transfer calls to the lower phase. After System Service interface receives the
appropriate file transfer calls, it provides the appropriate file transfer service to the lower
phase. In this phase, /O Manager based on the approprate file transfer system service
provides the appropriate file transfer IRP packets to the Device driver, which in turn
provides appropriate operation instructions for a device storage to HAL phase which
provides the appropriate operation instructions for a specified transfer bus to transfer the
file bits physically from the source and store them on the destination until complete

successfully [9].

As described previously, it can be seen, any task, even a small task an operating
system executes, it passes through many phases. So, in this research, the file transfer task
operations are divided into read operations and write operations to try to count the total

operations accurately.

So, to count approximately the number of operations of one file transfer, attention is

paid to track the operations from the user mode to the physical mode.

To transfer a file from a source to a destination successfully, Windows OS performs
many read/write operations from/to storage devices. To do that, It provides Application

Programming Interface to invoke the appropriate calls of transferring a file [5].

A “read” operation can be performed by calling ReadFile and a “write” operation can

be performed by calling WriteFile [10].

16

User Interactions Copy/Paste Process

Windows Call API User Mode
Subsystem System Service Interface Kemel Mode

'O Manager
Input/Output Request
Packets (IRP)
Device
Drivers
Hardware Abstraction Layer Calls:
Device Architectures Portability
HAL
Kemel Mode Bus specific
- ations
et 0
Hardware

Figure 2.8 Complete Communication Between User and Storage Device

In the user mode, there are 3 calls as follows [10]:

1) WiiteFile.
2) ntWriteFile.
3) KiFastSystemCall.

In the kernel mode, there are 4 calls as follows [10]:

1) KiFastSystemCall.

17

2) ntWriteFile.
3) IopSynchronousServiceTail.
4) TofCallDriver.

In the physical or low-level mode, there are 5 calls as follows [10]:

1) IRP for upper-filter driver.

2) IRP for storage class driver.
3) SRB for lower-filter driver.
4) SRB for storage port driver.

5) SRB for bus-specific command.

In fact, there are more multiple operations that are made between the user mode and
the kernel mode before the file i1s written to a storage device. WriteFile call contains 12
operations. ntWriteFile call contains 9 operations. KiSystemService call contains 5
operations. IopSynchronousServiceTail call contains 6 operations. IofCallDriver call

contains 1 operation [10]. Added sysenter and sysexit [11] operations which help enter/exit

to/from the user mode from /to the kernel mode.

All operations that concern one successful file transfer task from a source to a

destination are calculated. Table 2.1 shows the approximate number of write’s operations.

Table 2.1 Number of Operations of One File Transfer Task

Call per mode

Number of operations

WriteFile 13
ntWriteFile 10
user
KiFastSystemCall (sysenter) .
Sysexit 2

18

Table 2.1 Number of Operations of One File Transfer Task (Continued)

Sysexit 6
KiSystemService 6
kemel

IopSynchronousServiceTail 7

IofCallDriver 2

IRP for upper-filter driver 1

IRP for storage class driver 1

low level SRB for lower-filter driver 1
SRB for storage port driver 1

SRB for bus-specific command 1
Total Write’s operations 53

There are read’s operations too and must not be omitted. Supposing the read’s
operations number is equal to the write’s operations number, then, the total read/write

number is 106 operations.

So, one successful file transfer task locally from a source to a destination needs to
approximately 106 operations. For example, if we want to transfer 2000 files locally from a
source to a destination, the operating system will have to execute 212000 operations to

complete the entire files transfer task successfully.

19

Figure 2.9 shows an overview of the components of Windows OS. It can be seen, that
the operating system contains many components, each of which contains more internal
subcomponents. So, In the real world, each task 1s executed in a computer from any source
to any other source, such as transferring data locally from a storage device to another one,

passes through many Input/Output (I/O’s) operations by the operating system [12].

System Processes Services Applications Environment
Subsystems

Service -
control mgr. Windows
05/2
Winlogon —
User
Session Services.exe application POSIX I
ol t e Subsystem DLLs| Windows DLLs I
r
[NTDLLDLL |
User mode
Kernel mode
System
threads
| |
System Service Dispatcher
(Kernel mode callable interfaces)
Windows
VO Mgr z9 < USER,
=
oL .| =8 E[gg zxal| F= | F g u:;% r-.§5 s
Device&fl| 22 7| @73 | == =43 3g |28%2| 25 |25
File Sys. ol b s e Sl s 5 Graphics
Drivers — drivers
= |
Hardware Abstraction Layer (HAL) |

Hardware interfaces (buses, I/O devices, interrupts,
interval timers, DMA, memory cache control, etc)

Reprinted, by permission, from Inside Microsoft Windows 2000, 3rd Edition (ISBN 0-7356-1021-5). © 2000 by David A Solomon and
Mark E. Russinovich. All rights reserved.

Figure 2.9 Windows OS Components [12]
This 1s a so-called “layered OS” approach, in which the operating system 1s divided

mmto a number of discrete layers [5].

2.5 Chapter Summary

To transfer a file locally from a source to a destination, a computer operating system
such as Windows OS executes many read/write operations. So, in case of many small files,

the number of read/write operations increases bigger and bigger leading to a wasted time.

20

On the other hand, this implies that many initial operations per many new small files
being transferred in a very short time will lead to not only time delay, but system’s
resources consumption too. Also, some parts of the operating system itself 1s made up of

many small files that may affect its data transfer rate.

Most operating systems depend on the layered approach. Although a layered approach
software has had some success, it 1s generally not i1deal for designing operating systems due

to performance problems.

So, the main cause behind the problem of weaknesses of the operating system data
transfer rate of many small files, i1s that a complete file transfer task from a source to a

destination passes through many read/write operations.

Unfortunately, due to the requirements that increase according to challenges such as
improving protection of the transfer process, etc., the operating system pays less if no

attention to the data transfer rate speed.

21

CHAPTER THREE: LITERATURE REVEIW

3.1 Introduction

Weakness of operating system data transfer rate of small files 1s a challenge. There are
many contributions state-of-the-art to enhance the problem in the literature. Those
contributions vary upon perspective view of the problem reasons and environments. Some
focused on local environment or distributed environment. Some contributions focused on
physical structure or logical structure and some others focused on both. On the other hand,
there are contributions enhanced the hard disk drive, others enhanced the main memory
(RAM) and some others enhanced the internal build of storing. Also, there are contributions

enhanced the problem by adding extra hardware.

3.2 Related Works

The following review summarizes the previous works related to the thesis:

e Ahn et al. (2009) proposed a scheme called “A multiple-file write scheme for

improving write performance of small files in Fast File System” [13].

The scheme basic i1dea 1s to collect large numbers of modified small files in a buffer
cache, then write the data to disk in large disk I/O’s to improve the performance of small

file writes.

e Lensing et al. (2010) proposed an approach called “hashFS: Applying Hashing to
Optimize File Systems for Small File Reads” [14].

The approach depends on “hash™ approach to hash pathname approach to increase
small file read performance for a workload typical in Web 2.0 scenarios and does not rely
on a name- based or temporal locality or large in-memory lookup tables. A single small file
read 1s performed with a single seek nearly independent of the organization and size of the

file set or the available cache.

e Dong et al. (2012) contributed an approach named “An optimized approach for

storing and accessing small files on cloud storage” [15].

23

The approach improves the memory available on NameNode limitation of HDFS
scalability. Also, it classifies files into three types: structurally-related files, logically-
related files, and independent files. File merging strategy and file grouping strategy are
adopted. Also, it adds other adaptations.

e Fu et al. (2013) work 1s “iFlatLFS: Performance Optimization for Accessing

Massive Small Files” [16].

The work presents a file system called 1FlatLFS. 1FlatLFS directly accesses raw disks
and adopts a simple metadata scheme and a flat storage architecture to manage many small

files and each file access needs only one disk operation except when updating files.

o Zhang et al. (2014) proposed a method named “A Strategy to Deal with Mass Small
Files in HDFS” [17].

The method proposes a merging and prefetching mechanism in order to deal with the
mefficiency for middle size small file. It mtroduces different solutions for different file

size distributions and file formats.

e Tao etal. (2014) proposed a strategy named “Small File Access Optimization Based
on GlusterFS” [18].

The strategy aims at optimizing small file access performance in distributed file
system. This redesign structure of file metadata, minimized its size and merged small file

into large file.

e Gupta et al. (2015) proposed a framework called “An extended HDFS with an
AVATAR NODE to handle both small files and to eliminate single point of failure”
[19].

The framework improves the file correlation analysis for prefetching and merging to

the existing combined files.

24

e Bende et al. (2016) proposed a method called “Dealing with Small Files Problem in
Hadoop Distributed File System” [20].

The method introduces CombineFileInputFormat that gives performance in terms of
overhead as it involves slight overhead by combining multiple files into single split and

increases reading efficiency of small files.

e Jing et al. (2016) proposed a method named “An Optimized Approach for Storing
Small Files on HDFS-based on Dynamic Queue” [21].

The method contrary to the problem of HDFS which is poor in dealing with many
small text files generated by network. It classifies the text files with period classification
algorithm, chooses suitable queue for different size of small files, then merges the files in
queue, stores merged files to save memory, then generates secondary index and uses files

prefetching strategy to improve the efficiency of access files.

e Bok et al. (2017) proposed a scheme called “An Efficient Cache Management
Scheme for Accessing Small Files in Distributed File Systems” [22].

The scheme 1s proposed for the distributed cache management that applied cache
metadata synchronization cycle to improve small file access speed and minimize network
load with NameNodes in HDFS. In addition, the proposed scheme maintains NameNode
block metadata and cache metadata in the client cache, reducing unnecessary file accesses.
In short, the scheme uses metadata and cache i both server and, if the file is in the client,
there 1s no need for file access. If the file is not in the client, then the scheme accesses
firstly the file in the NameNode cache, if not, the scheme will access the file in the

NameNode.

e Cheng et al. (2017) proposed a scheme called “Optimizing Small File Storage
Process of the HDFS Which Based on the Indexing Mechanism” [23].

The scheme proposes a small file merging scheme based on indexing mechanism. The

proposal improves file access and executes the merging job by filtering the files with two

23

parameters; file-type and the amount of storage space required by the file, and then

encrypted before the files are passed onto HDFS.

e Lyuetal (2017) proposed a strategy called “An Optimized Strategy for Small Files
Storing and Accessing in HDFS” [24].

The strategy uses three aspects: 1) an optimized merging algorithm based on the size
of small files, which reduces the memory usage on NameNode. 2) A mapping file to
quickly locate the target file. 3) Using prefetching and caching for improving the reading
speed.

e Ahad et al. (2018) proposed an approach named “Dynamic Merging based Small
File Storage (DM-SFS) Architecture for Efficiently Storing Small Size Files in
Hadoop™ [25].

The approach proposes a two-way approach for effectively storing different files. The
first part deals with identifying the size of the files, while the second part deals with
classifying the files on their type. using DFM algorithm. Similar types of small files are

merged together. Furthermore, the contents of the files are encrypted.

e Peng et al. (2018) proposed a model named “Hadoop Massive Small File Merging
Technology Based on Visiting Hot-Spot and Associated File Optimization” [26].

The model adds two modules: merging module and caching module. In merging
module, a set of correlated files 1s combined, as identified by the client, into a single large
file. In caching module, design a special memory subsystem in which some data are

duplicated for quick access.

e Matri et al. (2018) proposed a model called “TyrFS: Increasing Small Files Access
Performance with Dynamic Metadata Replication” [27].

The model enables clients to locate any piece of data in the cluster independently of
any metadata server. A dynamic metadata replication module adapts to the workload to

efficiently replicate the necessary metadata on nodes from which the associated data 1s

26

frequently accessed. Clients can then read frequently accessed data directly, without

mvolving additional servers.

e Xiong et al. (2019) proposed a strategy named “A Small File Merging Strategy for
Spatiotemporal Data in Smart Health” [28].

The strategy proposed a merging strategy for small spatiotemporal data files in smart
health. This method takes advantage of the spatiotemporal locality and related of user

access, 1t improves the efficiency of file reading and reduce user access delay.

e Tao et al. (2019) proposed an approach named “LHF: A New Packet based
Approach to Accelerate Massive Small Files Access Performance in HDFS” [29].

In this approach, small files problem of HDFS is improved and the files to be merged
do not need to be sorted, which makes appending additional files to existing merged file

easier.

3.3 Critical Evaluation of Existing Approaches

The review of current literature of data transfer rate in operating system has led to the

identification of certain limitations that require further exploration in the thesis.

e Ahn etal. (2009) [13]. The scheme is based on modifying a file system hierarchy to
deal with only the files that their contents are 12 blocks (1 block equals 64B) and

less.

e Lensing et al. (2010) [14]. The approach enhanced only file read process, modify

the file system and directed to the web environment.

e Dong et al. (2012) [15]. The approach 1s for a distributed system and has a set of

many techniques that are sophisticated and might add time delay.

&l

Fu et al. (2013) [16]. This scheme is for 1KB to 64KB files, depends on modifying

a file system and directed to a distributed architecture.

Zhang et al. (2014) [17]. This method uses an additional hardware (store) and i1s

distributed system oriented.

Tao et al. (2014) [18]. The approach uses file merging, by file metadata, ignores the
file sizes above 50KB to 1MB and 1s for distributed systems.

Gupta et al. (2015) [19]. This framework 1s a file format specific, adds RAM

overheads and 1s for distributed architecture.

Bende et al. (2016) [20]. The mechanism adds an additional node layer for virtual

IP’s, does not address the efficiency and is for distributed system.

Jing et al. (2016) [21]. The method is only for txt files and server based. It stores the
merged files in the server RAM just to speed access. In such a case, this design in
addition 1t depends on many processes to be accomplished, 1t will fill up RAM as

soon as many files are generated from the small merged files.
Bok et al. (2017) [22]. The scheme is for file access and a distributed system,
1gnores the files data problem, does not utilize merging technique and uses volatile

memory that means data cache loss if memory is down.

Cheng et al. (2017) [23]. This proposal is distributed environment dependent,

improves file access and 1s surrounded by parameters.

Lyu et al. (2017) [24]. The proposal improves memory usage, file reading and is for
a distributed system.

28

e Ahad et al. (2018) [25]. The proposal has techniques which are so hard, performs a

modification on a file system and 1s for distributed architecture.

e Peng et al. (2018) [26]. This model 1s for a distributed system, uses extra hardware

and merge the files correlated and identified by user.

e Matn et al. (2018) [27]. This model improves metadata, only file access, does not

use merging technique and 1s for distributed system.

e Xiong et al. (2019) [28]. This strategy 1s for health spatiotemporal sensors, file

reading and access.

e Tao et al. (2019) [29]. This approach 1s for file access not file transfer and is
distributed specific.

Table 3.1 summarizes the strengths and limitations of the previous works related to

the thesis.

Table 2.2 Critical Analysis of Relevant Approaches

No. Author/Year Method Strength Limaitation

Collect small Involves files

files in a buffer, | Take advantage of | that only contain

1 Ahn et al./2009 | then write them | the buffer space up to 12 blocks
m large disk well for only a single

I/'O’s file system.

) Depends on hash For only file

Lensmg et) Reduces file read)
2 function for read, single file
al./2010 delay

pathname system and web.

29

Table 3.1 Crifical Analysis of Relevant Approaches (Continued)

for a distributed

Classifying files
Dong et al/2012 | Improves HDFS | system and has
' into three types
3 NameNode set of many
leads to more o
memory sophisticated
enhancement)
techniques
. Only for file
Directly Each file access
access process
4 Fuetal./2013 accesses raw needs only one .
_) _ and distributed
disks disk operation
system
Introduces
_ .) Adds extra
Merging and different solutions
) . hardware and for
5 Zhang et al./2014 prefetching for different file o
distributed
mechanism size and file
system
format
Redesigns file o Ignores file sizes
Optimizes small
metadata above 50KB and
6 Tao etal./2014) file access o
structure using for distributed
_ performance
merging system
] The more the
Using RAM for
Uses system _ files, the larger
) prefetching and _
RAM analysis o the RAM size
7 Gupta et al./2015 A merging is much _
for prefetching _ and overhead, 1t
_ faster than using | o
and merging) is for distributed
disk
system

30

Table 3.1 Crifical Analysis of Relevant Approaches (Continued)

o For only file read
Combining _
) Increases reading process and
8 Bende et al./2016 | multiple files) o
.) _ efficiency distributed
into single split
system
Classifies the
Only for .txt files
) text files, uses Increases file
9 Jing et al./2016 _ _ and server
merging and access efficiency
) system
prefetching
Serially Checks
meta data for -
_ Does not utilize
accessed file in)
) Increases file merging and for
10 Bok et al./2017 client, then _ o
access efficiency distributed
NameNode
system
cache, then
NameNode
File merging For distributed
based on Increases file system and file
11 Cheng et al./2017 .) _
indexing access efficiency access process
mechanism only
Uses three
aspects: file For distributed
Increases file read
12 Lyuetal./2017 | merge, file map, system and file

and prefetch and

cache

efficiency

read process only

31

Table 3.1 Crifical Analysis of Relevant Approaches (Continued)

Uses two
approaches: 1)

identifying filcs For a single file
size and 2) Increases file
13 Ahad et al /2018 d/wri .
ad et al. i read/write
Elsthang the _ distributed
files on their efficiency
system
types
Adds merging N
_ For distributed
and caching
. system and
modules with Increases file)
) merging
14 Peng et al./2018 | extra hardware read/write S
) 1dentified by
and the files are efficiency :
) . users might
identified by
affect the method
users
Locate any piece
of data in the Does not use
) cluster Increases file merging and for
k5 Matri et al /2018 | _ o
independently of | access efficiency distributed
any metadata system
server
Merge for small For only health
) _ Increases file .
16 Xiong et al./2019 | spatiotemporal _ spatiotemporal
) access efficiency
files in health sensors and read

32

Table 3.1 Crifical Analysis of Relevant Approaches (Continued)

_ Exploits
Appending o
remaining merged | For file access
additional files) o
17 Tao et al./2019 o file size for and distributed
to existing) _
increasing file system
merged file _
access efficiency
3.4 Remarks

In this thesis, the i1ssues stated previously will be tackled to solve the problem of

weaknesses of operating system data transfer rate of small files. Hence, from the previous

works, a number of remarks are noted as follows:

1)
2)
3)

4)
5)

6)
7)
8)
9)

Focuses on a specific environment, such as a distributed system or a health field.
Modifies the internal structure of a file system.

Adding extra hardware which will have to yield to basic modifications and/or
increase the cost.

Un-addresses the efficiency.

Relies on more complex steps which may cause other problems such as resource
consume or producing other problems in case of errors raise up.

Focuses on a specific aspect only, such as access only, read only or write only.

Uses techniques other than those approved 1n this research.

Focuses on a specific file format(s).

Improves only metadata, neglecting the data itself.

10) Focuses on a certain file size or very small range of file sizes.

Therefore, in this research, it will be proposed a new technique that will improve the

operating system data transfer rate of small-size files. On the other hand, this thesis will

suggest an algorithm that decides - before transferring process - which technique is suitable

33

to be applied to files being transferred, the proposed data transfer technique or using the

traditional operating system technique to benefit from the two techniques.

3.5 Chapter Summary

This chapter has reviewed the current literature that has led to the identification of
certain strengths and limitations of the existing approaches. This chapter has presented a

discussion of several of the previous researches.

The vast majority of the previous researches are for distributed systems, a very few
are for local systems. They are either sophisticated implemented by many steps and may

produce overheating, or adding extra hardware.

This research presents a new proposed technique, that improves the “data transfer rate
locally” of the operating system, for many small with non-cumbersome techniques,

includes all file formats, does not add hardware, and independent of the file system.

34

CHAPTER FOUR: DESIGN AND IMPLEMENTATION

4.1 Introduction

As described previously, to transfer a file locally from a source to a destination, the
operating system, such as Windows 10°’s OS, executes many I/O’s operations for the task
accomplishment. Consequently, this leads to the software weaknesses of the operating
system data transfer rate and more system resource consume, especially in a case of many

small files transfer.

So, to enhance this problem, a new technique is proposed. Its main idea is minimizing
I/O’s operations of Windows 10°s OS. This is done by merge and on-the-fly extract, as

described in details in this chapter.

4.2 Design

The computer specification: CPU: Intel Core 13™3110M 2.4GHz, HDD: SATA3
500GB 6Gb/s 5400r/m, RAM: DDR3 4GB 800MHz.

Firstly, files are divided into 12 groups or folders based on their sizes, to see the size

at which the proposed technique produces negative results. In this thesis, these sizes are:

512B, 1KB, 2kB, 4kB, 8kB, 16kB, 32kB, 64kB, 128kB, 256kB, 512kB and 1MB.

The first folder contains the files that each file of them 1s 512B, the second folder
contains the files that each file of them 1s 1kB, and so forth until the folder that contains the

files of 1MB of each.

To create each one of those folders with its related size and number of files,
FileTool64 application 1s used. All of those folders are stored in a source of a clean

formatted volume (E:\ partition).

Using the data transfer technique of Windows 10, the files of size 512B are transferred

to a destination of a clean formatted volume (F:\ partition).

36

The complete transfer time of the traditional technique of the operating system is

approximately 27.22s, and the data transfer rate i1s 73.48 file/s.

4.3 Proposed Technique
The proposed technique will be as follows:
First, the files are merged together. For this process, we choose:

- PeaZip application [30], because it 1s lightweight and for research experiments it 1s

the fastest file merging and extraction tool.

- .wim merging file format [31], because it is the fastest merging and extraction file

format for the research experiments.

The 2000 files of 512B size are merged together in the source to build one packet file.
The time for this task is 0.28s.

As soon as that packet is created in the source, it is extracted and all the files that it
contains are extracted “on-the-fly” to speed up the data transfer rate to the destination. The

time for this task 1s 11.57.

The complete transfer time of the proposed technique for these two tasks is

approximately 11.85s and the data transfer rate 1s 168.78 file/s.

Figure 4.1 depicts the overall principle of the proposed technique.

Source Channel Destination
Small File 1 ‘ » Small File 1
| Byl I I
Small File 2 1 Oise * Small File 2
[Swatt Fite 3] £e0 Packd | ——+[Small Fite 3]

. “’:‘Jlﬁemm File | L
" Merging 1
|S-mal!3?1]e 4. Tile ' On he fiy + S1:.nn]l File 4|
. B d Eatraction of .
The Original

Files

|sm.=,1;1-"i1|=;.-------‘-j ------b-!Smn]IE]cnl

Figure 2.10 Principle of Proposed Technique
37

For confirmation purposes, attention is paid to observe the file size range of the
proposed technique, and the above scenario 1s repeatedly applied to all other size groups or
folders. Table 4.1 summarizes the differences of data transfer times between the proposed

technique and OS’s technique of the all file groups.

Table 2.3 Data Transfer Time of Proposed and OS's Techniques

Proposed technique time (second)
Folder (2000 | Total folder OS time
files) size (KB) Merging On-the-.ﬂy . (second)
Extraction
512B 1000 0.28 11.57 11.85 2722
1KB 2000 0.50 14.22 14.72 31.28
2KB 4000 0.43 12.72 13.15 29.35
4KB 8000 0.50 14.36 14.86 31.43
8KB 16000 0.43 14.64 15.07 28.79
16KB 32000 0.58 17.86 18.44 31.43
32KB 64000 0.92 18.72 19.64 L35
64KB 128000 1.14 20.57 21.71 37.08
128KB 256000 2.78 20.86 23.64 48.14
256KB 512000 13.78 24.50 38.28 71.58

38

Table 2.4 Data Transfer Time of Proposed and OS's Techniques (Continued)

512KB 1024000 85.93 76.22 162.15 108.21
IMB 2048000 192.07 140.93 333 289.14
Mix of above 461400 11.42 20.72 32.14 7129

4.4 Evaluation of The Proposed Technique

The operating system data transfer rate suffers when transferring small files due to
many operations per each file transfer session. So, to decrease the effects m such a case,
“merging and extracting on-the-fly” technique 1s proposed. This technique implies that
before transferring many small files locally from a source to a destination on a computer,
they are merged together to create only one packet file. When the packet file is created, it is
extracted on-the-fly to the destination to speed up the extraction as much as possible. The
merging and on-the-fly extracting technique improves the data transfer rate of many small

files locally.

Validation can be done by analysing the calculations of time difference, data transfer
rate and efficiency between the operating system data transfer technique and the proposed

data transfer technique.

4.4.1 Evaluation of Enhancement of Data Transfer Time

Table 4.1 summarizes all calculations of the time delay differences of the transfer
processes of the files” groups between the proposed data transfer technique and Windows
10 OS’s technique. It 1s shown, that using the proposed data transfer technique, the data
transfer time delay for the 2000 files each of which has a size of 512B 1s 11.85 seconds,
whereas using the traditional operating system data transfer technique, the data transfer
time delay of them 1s 27.22 seconds. Refer to Table 4.1 for the remaining time delay

difference.

39

44.2 Evaluation of Enhancement of Data Transfer Rate Efficiency

Experiments are applied to show the results from perspective view of data transfer rate

Proposed Technique DRT— OS DTR

(or time) efficiency (Efficiency = x 100), which

Proposed Technique DRT
expresses DTR improvement or time saving percentage. Table 4.2 presents the proposed

data transfer technique and OS’s data transfer technique for all files” groups.

Table 2.5 Efficiency of Data Transfer Rate of Proposed Technique

Proposed Time)
) OS DTR) Efficiency
Folder (2000 files) technique DTR) saving
_ (Files/s) (%)
(Files/s) (second)
512B 168.78 73.48 1537 56.47
1KB 135.87 63.94 16.56 52.94
2KB 152.09 68.14 16.2 55.20
4KB 134.59 63.63 16.57 52.72
8KB 132.71 69.47 13.72 47.66
16KB 108.46 63.63 12.99 41.33
32KB 101.83 63.80 11.71 3735
64KB 0212 53.94 15.37 41.45
128KB 84.60 41.55 245 50.89

40

Table 4.2 Efficiency of Data Transfer Rate of Proposed Technique (Continued)

256KB 3225 27.94 333 46.52
512KB 12.33 18.48 -53.94 -49 85
IMB 6.01 6.92 -43.86 -15.17
Mix of above 62.23 28.05 39.15 54.92

There is an improvement of all file groups except 512KB and 1MB.

Figure 4.2 shows the efficiency of the proposed technique data transfer rate compared

with operating system.

Efficiency
n

—e—Proposed Technique =e=0S's Technique —e—Efficiency

Figure 2.11 Efficiency of Data Transfer Rate According to Size

So, it 1s validated that the number of the files that are transferred per second is
improved using the proposed technique compared to the traditional OS’s technique, hence,

the proposed technique improves the operating system data transfer rate.

41

On the other hand, resource consumption 1s validated. The tests are observed from
perspective view of disk read/write operations of the file transfer using DiskCountersView

application.

Figure 4.3 shows disk read/write counts per second of the file transfer operations
evaluation of Windows 10’s data transfer technique. It is shown that source read count is

8341 read/second and the destination write count is 9605 write/second.

ve.. Read Count Write Count Read Bytes Write Bytes

| E: 8,341 1,550 1,068,722176 1,074,556,928
| F: 2,004 9,605 16,625,664 304,075,264

Figure 2.12 Count of Disk Data Transfer Read/Write of Windows OS

Figure 4.4 shows disk read/write counts per second of the file transfer operations
evaluation of the proposed data transfer technique during merging. Here, the source read

count 18 10829 read/second.

ve .. Read Count Write Count Read Bytes Write Bytes
k 10,829 1,550 1074817024 1,074,556,928
[F: 2,004 13,915 16,625,664 377,058,752

Figure 2.13 Count of Disk Data Transfer Read/Write During Merging

Figure 4.5 shows disk read/write counts per second of the file transfer operations
evaluation of the proposed data transfer technique during on-the-fly extraction. The source

read count 1s 10846 read/second and the destination write count 1s 13941 write/second.

ive.. Read Count Write Count Read Bytes Write Bytes
L E 10,846 1,578 1,075,746,816 1,076,080,640

F: 2,004 13,941 16,625,664 377,610,752

Figure 2.14 Count of Disk Data Transfer Read/Write During Extraction

42

So, the average read count per second of the proposed technique from the source to
the destination 1s approximately 10837 read/second, and the write count per second of the

proposed technique from the source to the destination 1s approximately 13941 write/second.

Hence, the average read/write count from the source to the destination of the data
transfer using the proposed data transfer technique is greater than that of the operating

system. So, system resources are exploited efficiently.

4.5 Proposed Algorithm for Choosing Suitable Technique

For maximum utilization, the proposed technique algorithm 1s designed to use both
techniques; the proposed data transfer technique and OS’s technique. Figure 4.6 1s a graph
derived from Table 4.2. The graph shows that the proposed data transfer technique 1s not
always efficient. It shows that the proposed data transfer technique improves the data
transfer rate of the files’ sizes up to 379KB/file because at this point, we get 0% efficiency.
In this thesis, 0% efficiency 1s considered as “THRESHOLD” between the new proposed
technique and the operating system technique. For reliability, THRESHOLD 1s minimized
to 341KB/file (10% off).

A
24
g
p ¥
: ,/»\Q
< 7 \
L] i.'.sl_." \
[i] by
\
g ¥ \
[
[}
s \'\
a \
\.
\
\
15,15 \
\
LY
&
\
215 .5 2355 125 255.5 3208 GEE HiE SL25 6.5 5405 ™ TEE BS .5 0.5
f Ht + . 1 7
\ File|Size |(48)
3
- y
] \
Y]
A
kY
A
1.8 \
\
A
A\
A
16,85 it
Ly
\
\.

Figure 2.15 Change of Time Efficiency According to File Size
43

Therefore, the proposed technique 1s applied if:
THRESHOLD = Total size of files ~ number of files = 34 1KB/file

Consequently, to enhance the data transfer rate, a new algorithm for the new technique

1s proposed, working as presented in the flowchart shown in Figure 4.7.

Start

Files

v

Calculate
number and
total size of

files

v

Total size

Number of
Files

Y

’ Result Merge files
/t\pp}:v .05 ® e No— - —_Yes—» into one file
echnique THRESHOLD? in destination

Extract the
file directly
on the fly to
destination

v

Delete the
merged file

v
B End

&

Figure 2.16 Algorithm Flowchart for Choosing Appropriate Technique

44

4.6 Evaluation of Proposed Algorithm for Choosing Suitable Technique

If there are many files to be transferred locally from a source to a destination, the
algorithm calculates the result of division of total size of files by their total number. If the
result is equal or less than THRESHOLD, the new proposed technique is applied to transfer
the files. If the result 1s more than THRESHOLD, the traditional operating system
technique 1s applied to transfer the files.

For example, if there are 4000 files to be transferred, and their total size 1s 25MB,

then:
25MB = 4000 files = 6.4KB/file < THRESHOLD

Therefore, “size per file” i1s less than THRESHOLD, so, the proposed data transfer
technique 1s suitable and applied to transfer the files.

If there are 50 files to be transferred, and their total size 1s 25MB then:

25MB =+ 50 files = 512K B/file > THRESHOLD

So, “size per file” 1s more than THRESHOLD, and therefore, Windows 10’s operating
system traditional data transfer technique is suitable and applied to transfer the files.

Consequently, both techniques are used for maximum exploitation.

4.7 Coding Algorithm

To make the new proposed technique work automatically, the algorithm is coded

using Visual Basic 2017 programming language as shown in Figure 4.8.

The algorithm code 1s evaluated as well. Three small size file folders are created. The
first folder contains 8,000 files, the second folder contains 16,000 files and the third folder
contains 24,000 files. All three folders are tested and the results of the proposed data

transfer technique are positive and efficient than that of the traditional operating system.

45

8! DTR Enhancer For Master Degree — =

Source: E:\Transfer_Test

Destination: |F:\New folder

Threshold <= 341KB?: Yes Files Count: 24001

Transfer = Transfeming.. Time Bapsed: 0

Figure 2.17 Screen Shot of the Algorithm Code

4.8 Comparison of Results With Previous Works

Previous researches have presented solutions for distributed environment systems.
They have introduced improvements to challenge of the problem of poor software of an
operating system when transferring many small files. However, current researches have no
approaches to improve this problem “locally” in term of “data transfer rate”. Nevertheless,

this research is compared to two previous researches as well.

Using merging technique in buffer, Ahn et al. [13] proposed a technique that enhanced
the small file write of a server-based environment by modifying Fast File System FFS. Its

aim 1s the file size of 768B or less, and the average efficiency is 33%.

The new proposed technique is introduced for enhancing local based small data
transfer rate from a source to a destination without file system modification and it 1s not for
file write only. Also, the new proposed technique enhances the data transfer rate of more

file size up to 341KB by mean efficiency of 50.89%.

46

Tao et al. [28] proposed a new technique for improvement of small files for
distribution-based Hadoop File System HDFS. The approach proposed a merging technique
with two steps, the first step 1s merging small files into some part files and the second step
1s that meta-information is built into the index files to improve file access only. Also, the
approach supports appending additional files to a current archive. Again, our new technique
1s not for a distributed system and not only for improving file access, it 1s specifically for

data transfer rate improvement of an operating system locally from a source to a

destination.

Figure 4.9 shows a comparison of the three approaches in term of the time of data

transfer. Using the new proposed approach, the data transfer time is less than CW-FFS and
LHF approaches.

90.00
80.00
70.00
T 60.00
50.00

second

o 40.00

20.00

10.00
2000

4000 8000 16000 24000
Number of Small Files (512B - 341KB)

H Proposed Technique ®LHF ™ CW-FFS
Figure 2.18 Comparison of Data Transfer Time
4.9 Chapter Summary

Locally, data transfer rate of an operating system 1s affected negatively according to
file size changes, specifically when transferring many small files. So, this thesis proposed a
new technique approach to enhance the problem. Suitable tools were used to implement the

design, experiments and test. Also, coding the technique i1s implemented. The new

47

proposed technique was applied to Windows 10’s OS environment. The enhancement was
proven from two perspective views of the operating system software; the data transfer rate
and resources consumption. Also, the technique was designed to use both approaches of the
proposed and the operating system. The new proposed technique was compared with other

related works, and 1t was proven that 1t was more efficient.

48

CHAPTER FIVE: CONCLUSION AND FUTURE WORK

5.1 Conclusion

Locally, big files data transfer rate of the computer operating system 1s fine. The real
problem is the software weaknesses of the operating system data transfer rate due to
changes of the file sizes. The problem raises up when many small files transfer. This 1s
because the operating system executes many I/O’s operations from a source to a destination
for each file transfer process at very a small time period. This introduces two negative

reactions to the operating system:

1) Very low data transfer rate.

2) High resources consumption.
Therefore, this thesis has focused on three aspects:

1) Analyzing the data transfer task implemented by the operating system to find out
the reasons that lead to the occurrence of software weakness of the data transfer rate
of many small files.

2) Introducing a new proposed technique to enhance the operating system data transfer
rate of the small files with less system resources consumption.

3) Suggesting an algorithm that chooses the suitable mechanism between the proposed
data transfer technique and the traditional OS’s technique based on the files size and

number.

So, the operating system based on layered approach, such as Windows 10* OS have
some software weaknesses. For some conditions and needs, the operating system
developers still add more I/O’s operations, and do not pay attention to negative effects of

the operations addition.

There are many solutions, but the vast majority of them, if not all are for distributed
systems. They improve data access only, read only or write only. A very few solutions, or
may be no one improve the operating systems data transfer locally. In this research, both

have been focused on.

50

The research focuses on Windows 10’s operating system data transfer approach. This
thesis has proven that the more operations the operating system performs while transferring
a file, leads to more time delay and more resources consumption in case of many small
files. So, whatever the reasons which enforce the operating system developer to add more
operations when transferring files, it 1s necessary to pay attention to the time delay and

resources consumption caused by adding those operations.
So, this research proposed a technique approach depends on three steps:

1) Pure merging in the source to minimize the files’ transfer process operations which
an operating system executes.

2) On-the-fly extraction from the source to the destination to speed up the extraction
process.

3) Deletion of the created merging file.

Applying the approach steps introduce a new technique, which enhances the data
transfer rate weaknesses of the operating system when transferring many small files. The
new technique has been tested, evaluated and compared with other techniques, specifically
mm terms of data transfer rate locally from a source to a destination. Simplicity is an
advantage of the new proposed technique to keep it at less number of layers. It is efficient

i terms of time and resources consume

5.2 Limitation of The Proposed Approaches

The algorithm 1s efficient and has been validated. Nevertheless, it contains some

limitations:

1) Atsome unknown circumstances, it does not enhance small files data transfer rate.

2) There 1s no more control over the internal parameters of the merging file format to
make up pure zero-compression merging. So, the research supposes zero-
compression merging.

3) The algorithm 1s coded - for simplicity - using Visual Basic 2017 programming

language, and this language 1s considered high-level and slow.

51

5.3 Future Work

The hmitations described previously can be addressed as future work. Further, future

works are as follows:

1) Tuning the internal merging file format parameters to create a pure merging file
with zero-compression.

2) Codmg the algorithm using a fast programming language.

3) Enhancing the data transfer rate of Windows OS for any files’ sizes.

4) Applying the technique to enhance the “data transfer rate” on a distributed

environment operating system.

32

References

[1] Monthly mobile PC data traffic worldwide 2015-2022. (n.d.). Statista. Retrieved

April 5, 2020, from https://www.statista.com/statistics/7390 14/worldwide-monthly-

traffic-mobile-pc/

[2] Desktop Windows Version Market Share Worldwide. (n.d.). StatCounter Global

Stats. Retrieved April 5, 2020, from https://gs.statcounter.com/os-version-market-

share/windows/desktop/worldwide

[3] Why does copying multiple files take longer time than copying a single file of same

size? - Quora. (n.d.). Retrieved June 21, 2020, from https://www.quora.com/Why-

does-copving-multiple-files-take-longer-time-than-copving-a-single-file-of-same-

size#

[4] Operating System Tutorial: What is, Introduction, Features & Types. (n.d.).

Retrieved June 8, 2020, from https://www.guru99.com/operating-system-

tutorial html

[5] Abraham Silberschatz, Peter Baer Galvin, Greg Gagne. (2018). Operating System
Concepts. 10™ Edition.

[6] tedhudek. (n.d.). Example I/O Request—An Overview—Windows drivers. Retrieved

June 8, 2020, from https://docs.microsoft. com/en-us/windows-

hardware/drivers/kernel/example-1-o-request---an-overview
[7] EliotSeattle. (n.d.). User mode and kernel mode—Windows drivers. Retrieved April
22

: 2020, from https://docs.microsoft. com/en-us/windows-

hardware/drivers/gettingstarted/user-mode-and-kernel-mode

[8] MicrosoftDocs/windows-driver-docs. (n.d.). GitHub. Retrieved April 22, 2020, from
https://github.com/MicrosoftDocs/windows-driver-docs

[9] Chudzikiewicz, J., & Furtak, J. (n.d.). (2012). Cryptographic Protection of
Removable Media with a USB Interface for Secure Workstation for Special

Applications. Journal of Telecommunication and Information Technology. Military

53

University of Technology, Warsaw, Poland

[10] van Gorp, R., & van Bockhaven, C. (n.d.). (2018). Low-level writing to
NTFS file systems. MSc Security and Network Engineering.

[11] SYSENTER - OSDev Wiki. (nd.). Retrieved June 16, 2020, from
https://wiki.osdev.org/SYSENTER

[12] tedhudek. (n.d.). Overview of Windows Components—Windows drivers.

Retrieved June 8, 2020, from https://docs.microsoft.com/en-us/windows-

hardware/drivers/kernel/overview-of-windows-components

[13] Ahn, W. H., Lee, K, Oh, J., Min, K., & Hong, J. S. (2009). 4 multiple-file

write scheme for improving write performance of small files in Fast File System.
Information Processing Letters, 109(18), 1021-1026.
https://doi.org/10.1016/.ipl.2009.05.010

[14] Lensing, P., Meister, D., & Brinkmann, A. (2010). hashFS: Applying
Hashing to Optimize File Systems for Small File Reads. In 2010 International
Workshop on Storage Network Architecture and Parallel I/Os (pp. 33-42). Incline
Village, NV, USA: IEEE. https://do1.org/10.1109/SNAP1.2010.12

[15] Dong, B., Zheng, Q., Tian, F., Chao, K.-M., Ma, R., & Anane, R. (2012). An

optimized approach for storing and accessing small files on cloud storage. Journal
of Network and Computer Applications, 35(6), 1847-1862.
https://doi.org/10.1016/5.jnca.2012.07.009

[16] Fu, S., Huang, C., He, L., Chaudhary, N., Liao, X., Yang, S., ... Li, B.

(2013). 1F1atLFS: Performance optimization for accessing massive small files. In

20th Annual International Conference on High Performance Computing (pp. 10—

19). Bengaluru (Bangalore), Karnataka, India: IEEE.
https://doi.org/10.1109/HiPC.2013.6799116
[17] Zhang, S., Miao, L., Zhang, D., & Wang, Y. (2014). 4 Strategy to Deal with

Mass Small Files in HDFS. In 2014 Sixth International Conference on Intelligent
Human-Machine Systems and Cybernetics (pp. 331-334). Hangzhou, China: IEEE.
https://do1.org/10.1109/ITHMSC.2014.87

[18] Tao, X., & Ale1, L. (2014). Small file access optimization based on

GlusterFS. In Proceedings of 2014 International Conference on Cloud Computing

54

and Intemet of Things (pp. 101-104). Changchun, China: IEEE.
https://doi.org/10.1109/CCIOT.2014.7062514

[19] Gupta, T., & Handa, S. S. (2015). An extended HDFS with an AVATAR
NODE to handle both small files and to eliminate single point of failure. In 2015

International Conference on Soft Computing Techniques and Implementations

(ICSCTI) (pp. 67-71). Faridabad, India: IEEE.
https://doi.org/10.1109/ICSCTI.2015.7489606
[20] Bende, S., & Shedge, R. (2016). Dealing with Small Files Problem in

Hadoop Distributed File System. Procedia Computer Science, 79, 1001-1012.
https://doi.org/10.1016/].procs.2016.03.127

[21] Jing, W., & Tong, D. (2016). An Optimized Approach for Storing Small
Files on HDFS-based on Dynamic Queue. In 2016 International Conference on

Identification, Information and Knowledge in the Internet of Things (IIKI) (pp.
173-178). Beyying: IEEE. https://do1.org/10.1109/1IK1.2016.55
[22] Kyoungsoo Bok, Jongtae Lim, Hyunkyo Oh, & Jaesoo Yoo. (2017). An

efficient cache management scheme for accessing small files in Distributed File
Systems. In 2017 IEEE International Conference on Big Data and Smart Computing
(BigComp) (pp. 151-155). Jeju Island, South Korea: IEEE.
https://doi.org/10.1109/BIGCOMP.2017.7881731

[23] Wenjuan Cheng, Miaomiao Zhou, Bing Tong, & Junhong Zhu. (2017).

Optimizing small file storage process of the HDFS which based on the indexing
mechanism. In 2017 IEEE 2nd International Conference on Cloud Computing and
Big Data Analysis (ICCCBDA) (pp. 44-48). Chengdu, China: IEEE.
https://doi.org/10.1109/ICCCBDA.2017.7951882

[24] Yanfeng Lyu, Xunil Fan. (2017). An optimized strategy for small files
storing and Accessing in HDFS. In 2017 IEEE International Conference on

Computational Science and Engineering (CSE) and International Conference on
Embedded and Ubiquitous Computing (EUC). Xi’an, China: IEEE.
https://doi.org/10.1109/CSE-EUC.2017.112

[25] Ahad, M. A., & Biswas, R. (2018). Dynamic Merging based Small File
Storage (DM-SFS) Architecture for Efficiently Storing Small Size Files in Hadoop.

23

Procedia Computer Science, 132 1626-1635.
https://doi.org/10.1016/.procs.2018.05.128
[26] Peng, J., We1, W_, Zhao, H., Dai, Q., Xie, G, Cai, J., & He, K. (2018).

Hadoop Massive Small File Merging Technology Based on Visiting Hot-Spot and
Associated File Optimization. In J. Ren, A. Hussain, J. Zheng, C.-L. Liu, B. Luo, H.
Zhao, & X. Zhao (Eds.), Advances mn Bramn Inspired Cognitive Systems (Vol.
10989, pp. 517-524). Cham: Springer International = Publishing.
https://doi.org/10.1007/978-3-030-00563-4_50

[27] Matr, P., Perez, M. S., Costan, A., & Antoniu, G. (2018). TyrFS: Increasing
Small Files Access Performance with Dynamic Metadata Replication. In 2018 18th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID) (pp. 452-461). Washington, DE, USA: IEEE.
https://doi.org/10.1109/CCGRID.2018.00072

[28] Xiong, L., Zhong, Y., Liu, X., & Yang, L. (2019). A Small File Merging
Strategy for Spatiotemporal Data in Smart Health. IEEE Access, 7, 14799-14806.
https://doi.org/10.1109/ACCESS.2019.2893882

[29] Tao, W., Zhai, Y., & Tchaye-Kondi, J. (2019). LHF: A New Archive Based
Approach to Accelerate Massive Small Files Access Performance in HDFS. In 2019

IEEE Fifth International Conference on Big Data Computing Service and
Applications (BigDataService) (pp. 40-48). Newark, CA, USA: IEEE.
https://doi.org/10.1109/BigDataService.2019.00012

[30] PeaZip free archiver utility, open extract RAR TAR ZIP files. (n.d.).
Refrieved April 6, 2020, from https://www.peazip.org/
[31] LLC), T. M. (Aquent. (n.d.). Windows Imaging File Format (WIM).

Retrieved Aprl 6, 2020, from https:/docs.microsoft.com/en-us/previous-
versions/windows/1t-pro/windows-7/dd 799284 (v%3dws. 10)

56

Byuisl) Braral) Cilalall Juadal) sl cililad) J& Jasa Caead
LdAl

Gl e SN dallee e el ccWlaadll Caline 8 addin 23l Olga 52 Sisual)
e bl Jai a8y Sally Ayl algall e Basly L jual g A algall e 2l g
A 13 AL Lgde L) dallesy Ldas jiguaSll sigal cul€ ¢ aldll & dgasl
Gl 3l3)) (Y Cdy b5 A jignal Juts s b clild) i Jaea 8 0K
el Gl Legauts Jaaall alass igaadll Jag cVlaall pan (8 50 IS0 Ul e
Jaadal) aUay e cilbaanl) aes caaly 38 Lgale Gililaally ciblad) 8L ld Y L BA Llgall (g
Clilall axe g anall 6 sl Cus duall QU clily Ji Jaes il 8 3) A8
o e dul BT 1) AICaal ol ol (el L5yAKH Bpiaall Clilall diali clglis S S
Cagll g lun Coe (ppadtidl Ji e Glae S JS0 Lagha) 2 Al cddbisal) algal)
-Dlsall Dl

Juatal) HUail lladl Jis Jaee Ao 8l A8 Jalaty Shal g8 Gl 38 (ge Cangll
ginanl B 4l - LBlg Srarall Glalall (e paall J& Gan

e I 13l Bpaall lilal) (o aell Ulae cllad) Jail sa0a 308 Gl 138 4 5

iy g Jesal aUss dyjlass o e (6f g0 " alal) 2Ly &l (gaall bhiall po
colalal) J&5 dlee ol Jratil) aUai gy agts) 35S0 illaal) (il Jaf e cclalall plas
Glilall o el Ulas Glilall Jot Jaear Gl Lad Gad a0n 1 Gl s #)53l)
cpiisall el Gawss My sl pUas olol (aend) (5952 Laa Bpsiaal
13y cdejgall Labaill Lacaia lgia LN (Sly cBymall Cililall K8 (305 Jola Sllia
ol Ul Wae bl B Jaee (] Gaade lgie G dagp Y 4l QX (S A
& bl o Jare st e Jasd 40385 22005 couiilly Jidailly Clail) e) gs aaiay

-)

dayiaall Al dads G LAgas)) iaddl (e Siall il e anell Glas Juadall HUss

B Buaall lalal) (e uaall il 2Uas by Jo Jaee 33a0 Ll 5aall

58

Axianll 4 ggand)
raladl Cadly Alad) axlall) 554
Ol i) A__sals

SLRAYAN UNIVERSTT L) byl i
AL-RAYAN UNIVERSITY aal) il &

Bl Spsial) culilall Sl aUAH ULl J&5 Jina Gaal

<)
Jeelanls dilae dala

e -
Ogaaily dasa dau [a

22021 [51442

