

Republic of Yemen (.
Ministry of High Education &]—

Scintific Researh . B
.) gl—y Jlda e ol o
Al - Rayan University AL-RAYAN UNIVERSITY

Faculty of Higher Studies

THE IMPACT OF CONTROL FLOW OBFUSCATION
TECHNIQUE ON SOFTWARE PROTECTION
AGAINST HUMAN ATTACK

A Thesis Submitted to AL Rayan University to
Complete the Requirements of Obtaining a Master’s Degree in Information
Technology

By

Mohammed Hassan Bin Shamlan.

Supervisors

Dr. Adnan Abdullah Zain Dr. Mohammed Abdullah Bamatraf.

1441/2020

diaall 4) ggand) (
ol g Gl g ad) el 5135 L

» .
"l) dxala
Gl s ol Jda o ol o
Ladad) il ol FIR(Y AL-RAYAN UNIVERSITY

Glaad ua lghilaa o claapll 4 juaal) 58810 (G eda cilyis 3l
dusal) daigl)

Ol dzala) Aadia Al

Cilagleal) 4585 8 dcalal) daje Jo aldkia Jlasia
Alac)

a:l - CH - !

5
-

iy

ijhals e daaa . Cn) ablae olae L3

1441/ 2020

We certify that we have read the present work and that in our opinion it is fully
adequate in scope and quality as thesis towards the partial fulfillment of the

master degree requirements in

S Al ZAION T i sihynias anisslenins sasmins

Supervisors
Zocn

1) ASSO(LL@:@E, Pm’f . Dr- A—c‘r’\mm Ab duﬁ (e),

b}

Signature:

2)

Signature:

3)

Signature:

Approval of the Proofreader

[certify that the master's dissertation titled ,

e \ ‘,i
(.“..f..lf.;f::...fmfﬂ.cﬂ...f’.E.ém@p.;..T..E{@..L}f_‘,,..ﬁ.?a.E%J:‘%.H...{éf;.m_ -
TECHNIRVE 6N Sof TWARE PRITECTIsN ALIAI U/J7TP1C E

submitted by the student Motiim ,-u-g-,-p--%ﬁ?}m""'@rfn‘@,qniuw

has been linguistically reviewed under my supervision and has

become in scientific style and clear from linguistic errors and for
that I sign.

Proofreader : Drﬁdmn%@dﬂng&”
Academic Title : A’&SQCM‘}@P ,fa_f :
University : IQ'DET\/

Signature :==
Date: |%/lo/ 2020

Approval of the Scientific Supervisor

i i 's di tion titled = |QUE
e b sy oy eI E
(ANSOFIWARE...PROTECTLDN.... ALAINST. HumAN...) <

{
submitted by the student V\AAMMED. . HASAN. BN SHAMAN

has been completed in all its stages under my supervision and so
I nominate it for discussion.

Supervisor : Dr. Hean £ bullal, Zacn

SIZHAIOTE § ivorsmvnre g et svisons
Date : \§/10/ 202%e

ACKNOWLEDGEMENT

Special thanks and praises go to the almighty God for guiding me through this research.
[am extremely grateful to my supervisor, Dr. Adnan Abdullah Zain and Dr. Mohammed
Abdullah Bamatraf for their excellent supervision, guidance and encouragement throughout

the development of this thesis. I do appreciate their valuable support more than they know.

VI

Abstract

Software developers rely on obfuscation techniques for protecting their source code
against reverse engineering attacks. Most of the obfuscation techniques are not based on well-
defined measurements to clarify their effectiveness in protecting the source code from both
dynamic and static analysis by human subjects. This study presents an experimental technique
towards the aim to provide an assessment tool that mvestigates the impact of control flow
obfuscation on software protection against human attacks. The main objective is to estimate
how the obfuscation prevents or limits the ability of the attacker to understand and to perform
any modification on the source code. An experiment was designed to assess the capabilities of
the control flow obfuscation technique with the opaque predicates in preventing or limiting the

attacks on source code.

As a result of the statistical analysis used in this study, it is shown that the presence of
obfuscation on source code increases seven times the difficulties for the attacker to
successfully complete the understanding task. Also, the control flow obfuscation significantly
reduces the capability of subjects to correctly perform the understanding tasks while there 1s
no significant difference for modification tasks. Also, it 1s shown that the presence of
obfuscation on source code increases the amount of time needed for subjects to perform

modification and understand the source code.

VI

L W

g s olbias e oo Il T gyehe dadxy
Lo pexael gy las> 8 olaxeyd) doydaed!l ol yadall
ahzo.gaax>legaldl Jad o dwSx]l dwligll Oloxa
inbly Adoly olwlyed Jde daiasY giogdill olyiss
Lle> 3 LeiolasSs Leiallzs i ddyre Jol (o
Twlyadl sda adds .axwl ol Iuydaedl ol ad)l
Oy ad Al Giagds 5L dwl gy I dagy Lilac Liyixs
Slaxe Il w2 ol ol dolea> e gol) doytaall
dwlyad oued Ldas dopaxs prawad a0 Aol
O ol gl g 5 gsdill OLuES ol jud an i,
bl e JodaxS gl LaaiSy pgd e prlealdl 5,43
cdoydaall

ik, ool RERSandl o SLasWl Judafil ised§ gseb
Aoydaadl By aall de Guagdill sg>g ol ¢ dwl yal
Legr! s Sl olograll Slral dasw d)y aelipl)
2ol doyumall by addl ped Jal e axlgall
S JSds gl Il 500 Y Lo caame JSUo
Loydaaldl dyaddl e Jouaxidl axlealdl olyl AL
ioydaall Baadll gaeds ol maiy o Lanl Lpelip
Jodrdy peid prleal] a1 @Byl jlade o L)

Table of Contents

AKNOLGMENT 1l
ABSTRACT v
CONTENTS Vi
LisT OF FIGURES Vi
LisT OF TABLES VI
LisT OF ABBREVIATION

1 INTRODUCTION 1
1.1 THREATS TO SOFTWARE 1
1.1.1 PROGRAM ANALYSIS 2
1.1.2 REVERSE ENGINEERING 3
1.1.3 THREAT MODEL FOR SOFTWARE: UNTRUSTED HOST 3
1.2 OBFUSCATION 5
1.2.1 OBFUSCATION TECHNIQUES 5
1.2.2 OPAQUE PREDICATES 6
1.2.3 ADVANTAGES AND DISADVANTAGES OF OBFUSCATION 7
1.3 MOTIVATION 8
1.4 PROBLEMSTATEMENT 9
1.5 OBIJECTIVES 9
1.6 SCOPE AND LIMITATION 10
1.7 IMPORTANCE OF THE RESEARCH 10
1.8 THESIS LAvouT 10
2 LITERATURE REVIEW 12
2.1 CONTROL FLOW OBFUSCATION TECHNIQUE: 12
2.2 MEASURING THE EFFECTIVENESS OF OBFUSCATION TECHNIQUES 14
2.2.1 FIRST APPROACH 14
2.2.2 THE SECOND APPROACH 16
2.3 REeVERSE ENGINEERING OF SOFTWARE 17
2.3.1 DEFINITION 17
2.3.2 REVERSE ENGINEERING USES 18
2.3.3 REVERSE ENGINEERING TOOLS 19
2.4 STATISTICAL ANALYSIS 23

2.4.1 HYPOTHESISTESTING 24
2.4.2 STATISTICAL PACKAGE FOR THE SOCIAL SCIENCES (SPSS): 28
3 METHEDOLOGY 33
3.1 EXPERIMENTAL PLANNING 33
3.2 RESEARCH QUESTIONS 36
3.3 NULLHYPOTHESES 37
3.4 EXPERIMENT MATERIAL AND PROCEDURE 38
3.5 ANALYSIS METHOD 40
3.5.1 MEASUREMENT OF THE SIGNIFICANT DIFFERENCE 40
3.5.2 THE MEASURE OF THE EFFECT SIZE 41
4 RESULTS 43
4.1 TASK RESULTS 43
4.2 SIGNIFICANT DIFFERENCE RESULTS 43
4.3 EFFECT SIZE RESULTS 45
4.4 COMPARE THE OBTAINED RESULTS WITH PREVIOUS STUDIES 45
5 CONCLUSION AND FUTURE WORK 48
5.1 CoNcLUSION 48
5.2 FuTture WORK 49

LIST OF REFRENCES
LIST OF PUBLICATIONS

Xl

LIST OF FIGURES

Figure Page
2l HASHERRE . oismmbisemuiontodmmbomnns s s ks s e e et 19
22 ANEERPHEEIOP oemneresronammsspammmsmesmams e g e AR R AR 20
23 RSP o s b s s s e s A S S ST s RN S 21
2 A SP S e e 27
3.1 JAtthshon Sereenshiol evermrarnenssnnuers TS 34
A2 opinsereenshel v srannssssnnnibve srse as T 35
4.1 Boxplots of the average time for tasks executionc.ccoeivininnnnn. .. 43

Xl

LIST OF TABLES

Table Page
3.1 Ourworkvsbased WOrk 32
3.2 Summarization of the experiment ... 33
3.2 Total subjects and task distribution 34
4.1, Comectand Wwronie Fashs ..o s ssisms 42

4.2 comparison with previous studies ... 46

X1

List of Abbreviations

Symbol Nomenclatures

ANOVA Analysis of Variance

CIL Common Intermediate Language
CF Control Flow

DLL Dynamic Link Library

GUI Graphics User Interface

JIT Just In Time compiler
MANOVA Multivariate analysis of variance
RR Relative Risk

SGX Software Gard Extension

XV

Chapter 1

1 Introduction

Computer software 1s a group of instructions that tells the computer how to work;
software developers distribute their applications in many ways. Malicious users are
performing reverse-engineering attacks to change the software so that it meets their needs.
Generally, these sorts of attacks are proposed performed to overcome the security code
which prevents cracking the software and obtains some valuable information to use in an
unauthorized manner also copying the functionality, or manipulating and stealing sensitive
mformation or algorithms. A programming language such as C sharp is widely used in
software development. C sharp programming language compiling process translate source
code into a common intermediate language (CIL) which 1s assembly to byte-code and
during the execution of CIL assembly it passes through just in time (JIT) compiler to
generate native code, the attacker can easily attack a byte-code and extract valuable
information such as algorithms or registration serial number or cryptographic keys

available 1n the software.
1.1 Threats to Software

Computer software faces many different kinds of threats; including software piracy,
tampering, unauthorized modifications, and many other threats. Among these threads,
we distinguish two common threats to computer software: reverse engineering and program
analysis, this because reverse engineering and program analysis 1s considered the

cornerstone for many different types of attacks on software.

1.1.1 Program Analysis

Program analysis used to analysis the structural or behavior of the software. Those
processes of analysis are regarding to a property such as optimization, which focuses on
mmproving the program’s performance while reducing the usage of the resource by the
program or it may focuses on ensuring that the program perform its tasks correctly.

Analyzing a program can perform in many different sorts depending on status of
understudy program, if the analysis performed while the target program are not running or
i compile time this is called a static program analysis while 1f the analysis 1s performed at
run time of the target program this is called dynamic program analysis those are the two

kinds of program analysis.
1.1.1.1 Static program analysis

This type of analysis is conducted to examine and study the program properties
without executing the code. It’s useful for code error detection and compiler optimization.
Typical static program analysis techniques are: data flow, control flow, alias analysis, type
analysis and abstract interpretations [1]. Static analysis 1s conservative, which means the
properties that are found by static analysis techniques are weaker than the ones that may

actually be true (over-approximation).
1.1.1.2 Dynamic program analysis

This type of analysis is conducted to examine and study the program properties at the
run time of the program. For this analysis to be effective, it must be examine against all
possible inputs to cover almost possible outputs. This kind of analysis can be used in
software testing for memory error detection ,locating the buggy code, runtime error

detection as exceptions and discover security attacks vulnerabilities.

1.1.2 Reverse Engineering

Reverse engineering techniques typically use program analysis tools, in order to
perform the reverse process of reconstructing the program source code. It can be perceived

as a methodology, which combines both static and dynamic program analysis tools.

The reverse engineering process consists of several stages that aim to produce the
source code from the binary code. It starts with disassembly phase, where the machine code
1s translated to assembly code, and then i1t ends up with the decompilation phase, which
rebuilds the higher level representations of the program from the assembly code. Typically,
during this process, static program analysis techniques are employed first, followed as

required by dynamic program analysis tools.
1.1.3 Threat Model for Software: Untrusted Host

Program analysis and reverse engineering are the typical attacks on software that are
running on an untrusted host. This model of attack 1s widely known as white-box model,
where the adversary or attacker has the host or the system under her/his full control.
Aucsmith [2] characterizes three different levels for this model of attack:

1. The attacker uses standard debuggers and system diagnostic tools, no special
analysis tools are required.

2. Specialized software analysis tools involved, such as specialized debuggers and
sophisticated reverse engineering tools.

3. Specialized hardware analysis tools are employed; these tools include, for example,

CPU emulators, and bus logic analyzers.

White-box attacks are a very powerful type of attack especially for open computing

platforms such as PCs. The attackers have unlimited access to program binaries; however,

3

it is assumed that the attackers have very limited knowledge about the software source-
code. Having the attacker operating in white-box model, does not rule out the possibility of
subjecting the targeted software to black-box attack. In black-box model attacks, the
software 1s considered as an oracle, because the attacker can only analyzing the external
behavior of the software, where the internal knowledge of software 1s not required, or the

attacker does not examine it.

Collberg and Nagra [3] propose an attack methodology which resembles attackers’
behavior or strategy during the attack process. The attacker goes through five phases:
black-box phase, dynamic analysis phase, static analysis phase, editing phase, and scripting
phase. The attacker starts with black-box testing in order to reveal the external behavior of
the Software; however this stage can be skipped if the attacker has a comprehensive
understanding of the software’s functionality. Then the attacker moves to the dynamic
analysis phase in order to gain more understanding of the internal working of the program.
At this stage, the attacker has a high level understanding of the software and how it works.
In the static analysis phase, the executable code 1s checked and investigated directly. This
covers the reverse engineering process that we discussed earlier. Now, the attacker is
assumed to have very detailed understanding and a complete picture of the whole software
design and its implementation. For example, the proprietary algorithms can be exposed,
cryptography keys are revealed and vulnerabilities are discovered at this stage; therefore,
the confidentiality of software 1s compromised. Reaching the editing phase, the adversary
(attacker) uses the acquired knowledge of the software’s inner work to modify its
executable, or to mtegrate it with her/his own software for interoperability purposes. So far
the four stages are conducted manually, in practice these phases are not followed 1n order,

they are interleaved with each other using a trial and error process, pattern matching,

running and testing the code multiple times. Finally, when the attacker has fulfilled her/his
own goals and has enough confidence in the soundness of her/his work, a scripting code 1s

written in order to automate this process.

1.2 Obfuscation

Obfuscation uses for software intellectual property protection. The new version of the
source code which 1s obfuscated version must equal in function with the original one but
harder to recognize or comprehend [4]. Obfuscation is usually used to prevent manual
mspection of program internals. The most general strategies are renaming the variables and
methods and flatting down the program structures to become more complex. It can conceal
the location of a flaw in an obfuscated patch [5]. Obfuscation means that the original code
1s subjected to a series of transformations by changing its structure, so that it becomes more

difficult to understand, while preserving its original functionalities [6].

Definition: let O i1s an obfuscator which can transform a program P into its
obfuscated version O(P) which has the same functionality F as P, such that the F(P) =

F(O(P)) and such that it 1s unintelligible for an adversary who is trying to recover P from

o) [7] .

1.2.1 Obfuscation techniques

Code obfuscation techniques are classified into many classes: data obfuscation,

control flow, layout, and procedural obfuscation [8].
1.2.1.1 Data Obfuscation

Data Obfuscation alters the name of variables and functions to become much harder
to understand by human. Data obfuscation gathers all the transformations that obscure the

data structures used i a program. This includes for instance the changes in variable

5

representation, the conversion from static data to procedural data, the split or the

aggregation of variables.
1.2.1.2 Control Flow Obfuscation

In Control Flow Obfuscation technique the flow of control within the program’s code
1s altered, by creating conditional, branching, and iterative constructs which results into
valid executable logic, but on decompiling, it yields non-deterministic semantic results. In
this technique, the code 1s divided mto different blocks, which are encapsulated in a
selective structure with each block in a separate case, with an encapsulated selection. A
control variable that represents the program state i1s used to ensure the correct flow. To

overcome static analysis, control flow fattening 1s used.

1.2.1.3 Layout Obfuscation
Layout Obfuscation Layout obfuscation scrambles a program layout while keeping
the syntax intact. For example, it may change the orders of instructions or scramble the

1dentifiers of variables and classes.

1.2.2 Opaque Predicates

To obfuscate the control flow the Opaque predicate is generally used. A predicate is
an expression which logically evaluates to either "true" or "false". An Opaque predicate 1s
defined as follows; a predicate p, 1s named an Opaque predicate, if the outcome of a
program P 1s known before applying the predicate p, which 1s known to the programmer

but not known to the attacker. [9].

1.2.3 Advantages and Disadvantages of obfuscation

The most important advantages of obfuscation are:

1. Protection: obfuscation protects against static and dynamic analysis attacks as it
raises the bar for the attacker, 1.e. the attacker requires more time or resources to
achieve his goal.

2. Daversity: it 1s possibility to create different instances of the original program.

3. Low cost: obfuscation involves a low maintenance cost due to automation of the
transformation process and compatibility with existing systems.

4. Platform independence: obfuscation transformations can be applied on high-level

code so that platform independence 1s preserved.

The most important disadvantages are:

1. Performance overhead: every transformation introduces an extra cost in terms of
memory usage and execution time necessary to execute the obfuscated program.

2. No long term security Obfuscation: by means of code transformations does not
provide perfect security that makes analysis infeasible. Instead it makes program

analysis harder, though not impossible.

1.3 Motivation

Code obfuscation provides a promising technical approach for protecting software.
However, most of the current state-of-the-art obfuscation techniques are not based on well-
defined security principles that help to certify their success in protecting software.

The current notion of code obfuscation is based on a fixed metric for program
complexity, which 1s usually defined in terms of syntactic program features, such as code
length, number of nesting levels and numbers of branching instructions. There 1s a need to
practically examine and verify the effectiveness of obfuscation transformation based on
new quantitative means.

In order to evaluate the quality of software protection such as code obfuscation, we
have to capture quantitatively the security of code transformations, and study the code-
obfuscation resilience against an adversary, taking into account the adversary’s capabilities,

such as malicious software reverse engineering, static and dynamic analysis techniques, etc.

1.4 Problem statement

Most of the obfuscation techniques are not based on well-defined measurements to
clarify their effectiveness in protecting the source code from both dynamic and static
analysis by human subjects. This study targets the lack of experimental evaluation of
obfuscation techniques where this problem makes the effectiveness of any proposed

obfuscation technique is not empirically proven against analysis attacks.
1.5 Objectives

The goal of this study 1s to evaluate the effectiveness of the source code control flow
obfuscation technique with the opaque predicates for the purpose of evaluating their
effectiveness to make the code more difficult for malicious attacks by human subjects. This

can be achieved by:-

The objectives of this study are to:-

e Study how the control flow obfuscation technique with opaque predicates increases

the time needed to successfully analysis the source code by a human attacker.

e Determine how the control flow obfuscation technique with opaque predicates

reduces the attacker’s capability to understand and modify the source code.

1.6 Scope and limitation

This study will empirically assist the effectiveness of the control flow obfuscation
technique with opaque predicates in protecting the source code against malicious software
reverse engineering, static and dynamic analysis attacks. The study will not include any

other obfuscation techniques.

1.7 Importance of the research

The results of this study will help the software developers to choose the most
appropriate and best obfuscation technique in order to protect their applications. The study
will help researchers to find out - through the experimental approach - how obfuscation
techniques are powerful and efficient in software protection against static and dynamic

analysis attacks by human where a human is considered more dangerous.

1.8 Thesis Layout

This thesis 1s organized as the following chapters:

Chapter 1: A general introduction of the thesis 1s provided.

Chapter 2: Presents a thorough literature review on the research area of the thesis with
emphasis on the obfuscation effectiveness studies.

Chapter 3: The proposed methodology and the analysis methods are presented and
explained.

Chapter 4: In this chapter, the results and their detailed discussions are given.

Chapter 5: In this chapter, the conclusions of the study are presented, and an outline of

future work ideas based on this thesis 1s also given.

10

Chapter2

2 Literature Review

This chapter presents a survey about the previous works on software protection using
code obfuscation. We organized the contents of this chapter into the following sections.
Firstly we provide a literature review about control flow obfuscation technique specifically,
secondly we presents a survey about the researches for measuring the effectiveness of
obfuscation techniques. Lastly we details reverse engineering definition and list some

reverse engineering tools.
2.1 Control flow obfuscation technique:

The paper at [10] proposed three models for control flow obfuscation to obfuscate
android applications they target a Dalvik byte code level, those proposed models perform a
distribution the original control flow of the application by using packing-switch and try-
catch constructs, also the combination of these constructs. they presented a register-type
separation technique, which solve the Android runtime type conflict problem in the
obfuscated applications. The paper previews some analysis that shows the effectiveness of

the proposed models.

A new control flow obfuscation scheme called generalized dynamic opaque
predicates has been developed at [11]; this approach extends the scope of the application by
transforming the program structure like loops, branch and the straight line code. This
system does not require the opaque to be adjacent so it is become. the researchers have

developed a prototype tool and evaluated it by obfuscating the GNU utilities more resilient

tn the ME nhfuiceatinn technian
O ulc i/ OO C e

12

A novel control flow obfuscation has been proposed at [12], to protect android
applications source code, they develop an algorithm to insert an irrelevant code and flatten
the control flow which insuring the strength of the obfuscation and minimize its cost. Also
they improve some traditional methods of control flow flattening to further reduce the costs
of obfuscation, they introduce a method to strength the opaque predicates by convert the
1dentification of the opaque predicates in the whole program into a graph traversal problem.
An experiment was conducted to evaluate the proposed methods shows that the proposed

methods work well.

A new novel control flow obfuscation technique is proposed in [13], this technique
mmplements Turing machines to simulate the computation of branch conditions. By
weaving the original program with Turing machine components, this results a complicated
control flow graph, the proposed method provides many advantages such that its ability to

obfuscate any program components.

The researchers at [14] introduce a pragmatic control flow obfuscation that gives the
developer the ability to customize the tradeoff between the overhead and the achieved
complexity. the methods of the application will be obfuscating in different round using
tray-catch and packed-switch constructs, where the large method will have obfuscated in
sense of many fragments during the early rounds, after each round the cyclomatic
complexity based metric 1s used to calculate the complexly and check it against the desired
complexity, this checking process will be done incrementally until the target complexity 1s

reached.

13

The paper at [15] combines Intel Software Guard Extension (SGX) technology and a
program transformation a hardware-assisted control flow obfuscation solution, and propose
control flow hider (CF Hider). This mechanize of protection based on moving the
conditions of statements into the CF Enclave, which 1s an opaque and trusted SGX enclave,
and nserting fake branch statements into the program to further obfuscate the control flow.
CF Hider is the first solution that leverages SGX technology to protect control flow
confidentiality, which achieves a high confidentiality guarantee and a low performance

overhead.

The study at [16] presented a new control flow technique by rewriting the original
code of the program in the continuation passing style. Where the original code 1s encoded
through a function pointers and higher order combinatory, this results a fragmented control
flow graph of the original code. Thus the code tempering attack became harder. The paper
also presents a prototype of the developed technique to obfuscate C language source code

to compare this technique with the other available techniques.
2.2 Measuring the effectiveness of obfuscation techniques

There are two major approaches of research for measuring the effectiveness of
obfuscation techniques in protecting the software: one is based on source code metrics like
code complexity factors for example number of code lines and variable renaming, the
second 1s based on experimental valuation agamst a human attack where a human 1s

considered more dangerous.
2.2.1 First approach

One of the early researches was conducted by Collberg et al. [17], in which they

consider some fundamental metrics in their evaluation such as complexity metric which

14

indicates how much the difficulty to understand the obfuscation code by the attacker as
compared to the original code. The other metric used 1s the degree of nested statements and

execution time of the obfuscated code.

A large scale study was conducted in [18], in order fo measure the effects of
obfuscation. May metrics were used for the measurements. The changes that occurred to

Java codes were quantified in sense of complexity, modularity.

A quantitative model with a set of security metrics derived from the well-known
Kolmogorov complexity was presented in [19]. It 1s reported that most of the obfuscation
techniques are not based on well-defined security principles that help to certify their

success 1n protecting software.

In essence, there are two related challenges that arise in code obfuscation security: the
lack of a theoretical foundation, and the difficulty of finding consistent and, theoretically

and empirically, valid measures of code obfuscation quality.

In [20], an obfuscation approach which yields probabilistic control flow within a
given method was given. In this approach, given the same input values, different multiple
execution traces are obtained, while preserving the semantics. The scheme presented led to
a harder dynamic analysis, which 1s achieved by embedding an obfuscation graph

containing multiple v-paths.

The study at [21], try to evaluate a set of 7 obfuscation methods on 240 Android
Packages 1n case of applying those methods iteratively, they define and trays to find out
some structural properties of these methods regarding different complexity metrics. In this

research the results show that most of obfuscation methods used in the study are exhibit

15

stable properties regarding different complexity metrics, while a few obfuscation methods

have unstable properties regarding some of the metrics.

At [22] the effects of code obfuscation on Android application in case of similarity
check 1s analyzed because after obfuscated a software 1t’s difficult to detect a software theft
or to determine which copy is the original one and which one is the stolen copy, thus
adversaries can also use obfuscation techniques to keep hiding stolen software. The
empirical measurements were done on five different Android apps with DashO obfuscator.
Experimental results show that similarity measures at byte code level are more effective

than those at source code level to analyze software similarity.
2.2.2 The second approach

A series of assessments to evaluate the capability of code obfuscation techniques was
given in [23]. An empirical approach was adopted. Opaque predicates and identifier
renaming were used to decrease the capability of reverse engineer to accurately complete or

perform an attack.

In [24], two experiments were conducted to evaluate the renaming, where this

technique targets the names of the identifiers in the program code.

The research in [23] and [24] are similar in the sense that they examine the i1dentifier

renaming obfuscation technique.

In [25] an experiment that aims to assess the capability in preventing attacks on
obfuscated data, was conducted with student pretends as attackers to attack a programs

written in C programming language.

A recent large scale study was presented at [26] where an online android developer

was participated in an experiment for testing the effectivity of android developers to use

16

obfuscation for protecting their application. The study indicates that the majority of app
developers do not obfuscate their core code, and even when they do they do not use all of
the available features. These results might indicate that developers either only obfuscate

critical parts of their application or do not fully understand the concept of obfuscation.

2.3 Reverse Engineering of Software

2.3.1 Definition

The Institute of Electrical and Electronics Engineers defined reverse engineering as
"the process of analyzing a subject system to identify the system's components and their
mterrelationships, and to create representations of the system in another form or at a higher
level of abstraction", where the "subject system" i1s the end product of software
development. Reverse engineering is a process of examination only: the software system
under consideration 1s not modified (which would make it re-engineering or restructuring).
Reverse engineering can be performed from any stage of the product cycle, not necessarily
from the functional end product.[32]

There are two components in reverse engineering: redocumentation and design
recovery. Redocumentation is the creation of new representation of the computer code so
that it is easier to understand. Meanwhile, design recovery is the use of deduction or
reasoning from general knowledge or personal experience of the product in order to fully
understand the product functionality.[32] It can also be seen as "going backwards through
the development cycle".[33] In this model, the output of the implementation phase (in
source code form) is reverse-engineered back to the analysis phase, in an inversion of the
traditional waterfall model.

Software anti-tamper technology like obfuscationis used to deter both reverse

In practice, two main types of reverse engineering emerge. In the first case, source
code 1s already available for the software, but higher-level aspects of the program, perhaps
poorly documented or documented but no longer valid, are discovered. In the second case,
there 1s no source code available for the software, and any efforts towards discovering one
possible source code for the software are regarded as reverse engineering. This second
usage of the term 1s the one most people are familiar with.

On a related note, black box testing in software engineering has a lot in common with
reverse engineering. The tester usually has the APL but their goals are to find bugs and

undocumented features by bashing the product from outside [34].

2.3.2 Reverse engineering uses

Reverse engineering 1s used 1n a variety of fields such as software design, software
testing and programming [35].
++ Software design, reverse engineering enables the developer or programmer to add new
features to the existing software with or without knowing the source code. Different
techniques are used to incorporate new features into the existing software.
% Reverse engineering 1s also very beneficial in software testing, as most of the virus
programmers don’t leave behind instructions on how they wrote the code, what they
have set out to accomplish etc. Reverse engineering helps the testers to study the virus

and other malware code. The field of software testing, while very extensive, is also

interesting and requires vast experience to study and analyze virus code.

.
*

The third category where reverse engineering 1s widely used is in software security.

Reverse engineering techniques are used to make sure that the system does not have

The main purpose of reverse engineering is to make the system robust so as to protect
it from spywares and hackers. In fact, this can be taken a step forward to Ethical
hacking, whereby you try to hack your own system to identify vulnerabilities.

¢ Other purposes of reverse engineering include security auditing, removal of copy
protection or cracking , circumvention of access restrictions often present in consumer

electronics, customization of embedded systems such as engine management systems.

2.3.3 Reverse Engineering Tools

As mentioned above, reverse engineering is the process of analyzing the software to
determine its components and their relationships. The process of reverse engineering is
accomplished by making use of some tools that are categorized into debuggers or

disassemblers, hex editors, monitoring, and decompile tools [35]:

+ Disassemblers: A disassembler 1s used to convert binary code into assembly code and
also used to extract strings, imported and exported functions, libraries, etc. The
disassemblers convert the machine language mto a user-friendly format. Different
dissemblers specialize in certain things. One example of the intermediate language
Disassembler tools i1s Ilasm.exe as shown in figure 2.1. Ildasm.exe takes a portable
executable file that contains intermediate language code and creates a text file suitable

as mput to llasm.exe. This tool 1s automatically installed with Visual Studio [36].

19

f C:\Temp\NET'Hello.exe - IL DASM = Iﬂlﬁ

File View Help

SR _\Temp\NET\Hello exe
- MANIFEST
=@ Hello
= HelloClass
» class private auto ansi beforefieldinit
~ W ctor: void()
- & Main : void()

.assembly Hello B
4

T [

Fig 2.1. Ilasm.exe

Decompiler: As its name implies, a decompiler performs the opposite operation of a
compiler: 1t transfers compiled byte-code to corresponding high-level source code. By
knowing the relationship between the high-level code and its corresponding IL byte-
code, a decompiler can identify and convert the IL instructions into their high-level
equivalent. In terms of decompilers, for the NET runtime, the famous useful tool 1s
NET Reflector. It is considered one of the “Ten Must-Have” utilities for developers by
MSDN magazine [37]; this free software provides advanced capabilities such as
decompilation, a class browser, and static analysis for executables. Figure 2.2 shows

the NET Reflector user interface

20

£7 Lutz Roeder’s _NET Reflector !EI!!!

| Ble View TIoos Hep

el |8y x oim M c|| &
«3 mscorlib
1 Sy st incioves Fcrms method public hidsbysig static void Main() cil managed =
[«J System {
B -3 Hello .entrypoint
= W% Hello.exe 1i Code Size: 11 byte(s)
— .maxstack 1
== R?fe'er‘: L_0000: ldstr “Hello world"
-8 mscor L_0005: call void [mscorlib]System. Console::Writeline(string)
| {}- L_000a: ret
B {} Helo k tet (00022} Retums from the current methad. pushing a
[= % HelloClass retuin value (if present) from the caller's evaluation stack
B ¥) Base Types onto the callee's evaluation stack.
“1% System.Object
Y Derived Types
@ .ctor()

.method public hidebysig static void Main() cil managed =
{

‘.I .entrypoint]";I—‘J j'-lﬂ

Fig 2.2. .Net Reflector

% Debuggers: This tool expands the functionality of a disassembler by supporting the
CPU registers, the hex dupmg of the program, view of stack etc. Using debuggers, the
programmers can set breakpoints and edit the assembly code at run time. Debuggers
analysis the binary in a similar way as the disassemblers and allow the reverser to step
through the code by running one line at a time to investigate the results. dnSpy is a
debugger and .NET assembly editor. You can use it to edit and debug assemblies even

if you don't have any source code available. Figure 2.3 shows the dnSpy user interface.

21

*,
R

*e

Fig 2.3. .dnSpy

Hex Editors: These edifors allow the binary to be viewed in the editor and change it as
per the requirements of the software. There are different types of hex editors available
that are used for different functions.

PE and Resource Viewer: The binary code 1s designed to run on a windows based
machine and has a very specific data which tells how to set up and initialize a program.
All the programs that run on windows should have a portable executable that supports

the dynamic link libraries the program needs to borrow from.

22

2.4 Statistical Analysis

Statistics 1s the discipline that concemns the collection, organization, analysis,
interpretation and presentation of data. In applying statistics to a scientific, industrial, or
social problem, 1t 1s conventional to begin with a statistical population or a statistical
model to be studied. Populations can be diverse groups of people or objects such as "all
people living in a country" or "every atom composing a crystal". Statistics deals with every
aspect of data, including the planning of data collection in terms of the design

of surveys and experiments.

Statistical analysis 1s a component of data analytics. It involves collecting and
scrutinizing every data sample in a set of items from which samples can be drawn. A
sample, in statistics, 1s a representative selection drawn from a total population. Statistical

analysis can be broken down into five discrete steps, as follows:

e Describe the nature of the data to be analyzed.

¢ Explore the relation of the data to the underlying population.

e C(reate amodel to summarize understanding of how the data relates to the
underlying population.

e Prove (or disprove) the validity of the model.

¢ Employ predictive analytics to run scenarios that will help guide future actions.

The goal of statistical analysis 1s to 1dentify trends. A retail business, for example,
might use statistical analysis to find patterns in unstructured and semi-structured customer

data that can be used to create a more positive customer experience and increase sales.

23

2.4.1 Hypothesis testing

Hypothesis: Research usually starts with a problem. Questions, objectives and
hypotheses provide a specific restatement and clarification of the problem
statement/research question. Hypothesis 1s a tentative explanation that accounts for a set of
facts and can be tested by further investigation. Hypothesis should be statements expressing
the relation between two or more measurable variables. It should carry clear implications

for testing the stated relations.

A good hypothesis must be based on a good research question.

e Hypothesis should be simple, specific and stated in advance.

e It must have explanatory power.

o [t must state the expected relationship between variables.

e Itmust be testable.

e [t should be consistent with the existing body of knowledge.

e It should be stated as simply and concisely as possible.

Types of Hypotheses: hypotheses are classified into two types: Null Hypotheses: is

a statement that there is no actual relationship between variables. (Ho or HN). A null
hypothesis may read, “There 1s no difference between.....” Ho states the opposite of what
the experimenter would expect or predict. The final conclusion of the investigator will
either retain a null hypothesis or reject a null hypothesis in favor of an alternative
hypothesis. Not rejecting Ho does not really mean that Ho is true. There might not be
enough evidence against Ho. Once the null hypothesis has been stated, it is easy to

construct the alternative hypothesis. It is essentially the statement that the null hypothesis is

24

false. Example can be “There is no significant difference in the anxiety level of children of

High IQ and those of low IQ.”

Alternate Hypotheses: is a statement that suggests a potential outcome that the
researcher may expect. (Hl or HA). It 1s established only when a null hypothesis is
rejected. Often an alternative Hypothesis is the desired conclusion of the investigator. The
two types of alternative hypothesis are: Directional Hypothesis and Non-directional

Hypothesis.

Directional Hypothesis: It is a type of alternative hypothesis that specifies the
direction of expected findings. Sometimes directional hypothesis are created to examine the
relationship among variables rather than to compare groups. Directional hypothesis may
read,” 1s more than”, “will be lesser” Example can be “Children with high IQ will exhibit

more anxiety than children with low 1Q”

Non-directional Hypothesis: It is a type of alternative hypothesis in which no
definite direction of the expected findings 1s specified. The researcher may not know what

can be predicted from the past literature. It may read, “... There 1s a difference between...”

Hypothesis Testing: Hypothesis testing is a statistical technique that is used in a

variety of situations. Testing a hypothesis involves

e Deducing the consequences that should be observable if the hypothesis 1s correct.

e Selecting the research methods that will permit the observation, experimentation, or

other procedures necessary to show whether or not these do occur.

e Applymg this method and gathering the data that can be analyzed to indicate

whether or not the hypothesis is supported.

25

The following descriptions of common terms and concepts refer to a hypothesis test

in which the means of two populations are being compared.

In the field of statistics, a hypothesis 1s a claim about some aspect of a population. A
hypothesis test allows us to test the claim about the population and find out how likely it 1s
to be true. The hypothesis test consists of several components; two statements, the null
hypothesis and the alternative hypothesis, the test statistic and the critical value, which in

turn gives us the p-value and the rejection region (), respectively.

Test Statistic: The test statistic 1s the tool researcher use to decide whether or not to
reject the null hypothesis. It is obtained by taking the observed value (the sample statistic)
and converting it into a standard score under the assumption that the null hypothesis is true.
The test statistic depends fundamentally on the number of observations that are being
evaluated. It differs from situation to situation. The whole notion of hypothesis rests on the

ability to specify (exactly or approximately) the distribution that the test statistic follows.

Significance: The significance level 1s a measure of the statistical strength of the
hypothesis test. It is often characterized as the probability of incorrectly concluding that the
null hypothesis i1s false. The significance level should be specified up front. The
significance level 1s typically one of three values: 10%, 5%, or 1%. A 1% significance level
represents the strongest test of the three. For this reason, 1% i1s a higher significance level

than 10%.

Power: Related to significance, the power of a test measures the probability of
correctly concluding that the null hypothesis is true. Power 1s not something that researcher

can choose. It 1s determined by several factors, including the significance level selected and

significance and power are inversely related. Increasing significance decreases power. This

makes 1t difficult to design experiments that have both very high significance and power.

Critical Value: The critical value 1s the standard score that separates the rejection
region () from the rest of a given curve. The critical value in a hypothesis test is based on
two things: the distribution of the test statistic and the significance level. The critical
value(s) refer to the point in the test statistic distribution that give the tails of the
distribution an area (meaning probability) exactly equal to the significance level that was

chosen.

Decision: Your decision to reject or accept the null hypothesis 1s based on comparing
the test statistic to the critical value. If the test statistic exceeds the critical value, you
should reject the null hypothesis. In this case, you would say that the difference between

the two population means 1s significant. Otherwise, you accept the null hypothesis.

P-Value: It 1s the area to the left or right of the test statistic. The p-value of a
hypothesis test gives another way to evaluate the null hypothesis. The p-value represents
the highest significance level at which particular test statistic would justify rejecting the
null hypothesis. For example, if the significance level of 5% 1s chosen, and the p-value

turns out to be .03 (or 3%), it would be justified in rejecting the null hypothesis.

One-Tailed Test: One-tailed test alludes to the significance test in which the region
of rejection appears on one end of the sampling distribution. It represents that the estimated
test parameter is greater or less than the critical value. When the sample tested falls in the
region of rejection, 1.e. either left or right side, as the case may be, it leads to the acceptance

of alternative hypothesis rather than the null hypothesis.

27

Two-tailed Test The two-tailed test is described as a hypothesis test, in which the
region of rejection or say the critical area is on both the ends of the normal distribution. It
determines whether the sample tested falls within or outside a certain range of values.
Therefore, an alternative hypothesis 1s accepted in place of the null hypothesis, if the

calculated value falls in either of the two tails of the probability distribution.

2.4.2 Statistical Package for the Social Sciences (SPSS):

Statistical Package for the Social Sciences 1s a software package which 1s used in
statistical analysis of data. It was developed by SPSS Inc. to edit and analyze all sorts of
data and acquired by IBM 1n 2009. In 2014, the software was officially renamed IBM SPSS
Statistics. The basic application of this program 1s to analyze scientific data related with the
social science. This data can be used for market research, surveys; data mining, etc. figure

2.4 shows the main screen of the SPSS software.

Archivo Editar Ver Datos Transformar Analizar Marketingdirecto Grificos Utilidades Ventana Ayuda

SEG R > BLil HERELCE 909

Visible: 0 de 0 variables

var var I var var var var var var Vi

IBM SPSS Statistics Processor esta listo Unicode:ON

Fig 2.4 SPSS

28

Features and Benefits of SPSS:

1. Itisaneasy to navigate GUI (graphics user interface) with a wide range of options
for users. It can generate syntax which can be edited or saved.

2. SPSS assignment help experts suggest that it makes data management easy with its
features of recording and transforming scores, selecting cases on the basis of score
values, combining the files by adding wither cases or variables.

3. SPSS is easy to learn command language wherein explanations for keywords and
subcommands are available online.

4. Spatio-Temporal Prediction 1s a technique that creates linear models when data has

been gamered over a period of time from different locations.

2.4.2.1 The statistical methods which are used in SPSS are:

Descriptive Statistics: SPSS help professionals suggest that descriptive statistics
describe the basic features of the acquired data m a study along with providing summaries
of sample and the measures. Frequencies, cross tabulation, descriptive radio statistics come

under this.

Bivariate Statistics: It 1s a form of quantitative statistical analysis that determines the
empirical relationship between two variables (often denoted as X, Y). Some of its tools are

ANOVA, means, correlation, nonparametric tests.

Other than the above-mentioned statistical methods that can be leveraged in SPSS,
there 1s a prediction for identifying groups, including cluster analysis (K-means, two-step,

hierarchical), factor analysis, and Numeral outcome prediction such as linear regression.

29

2.4.2.2 How SPSS Helps in Research & Data Analysis Programs:

SPSS 1s a revolutionary software mainly used by research scientists which helps them
process critical data in simple steps. Working on data is a complex and time-consuming
process, but this software can easily handle and operate information with the help of some
techniques. These techniques are used to analyze, transform, and produce a characteristic
pattern between different data variables. In addition to it, the output can be obtained

through graphical representation so that a user can easily understand the result.

2.4.2.3 SPSStechniques for data processing

SPSS techniques that are responsible in the process for data handling and its

execution.

1. Data Transformation: This technique is used to convert the format of the data.
After changing the data type, it integrates the same type of data in one place and 1t becomes
easy to manage it. You can insert different kinds of data into SPSS and 1t will change its
structure as per the system specification and requirement. It means that even 1f you change

the operating system, SPSS can still work on old data.

2. Regression Analysis: It is used to understand the relationship between dependent
and interdependent variables that are stored in a data file. It also explains how a change in
the value of an interdependent variable can affect the dependent data. The primary need of

regression analysis 1s to understand the type of relationship between different variables.

3. ANOVA (Analysis of variance): It 1s a statistical approach to compare events,

groups, or processes, and find out the difference between them. It can help you understand

30

which method is more suitable for executing a task. By looking at the result, you can find

the feasibility and effectiveness of the particular method.

4. MANOVA (Multivariate analysis of variance): This method is used to compare
data of random variables whose value 1s unknown. MANOVA technique can also be used

to analyze different types of populations and what factors can affect their choices.

S. T-tests: It 1s used to understand the difference between two sample types, and
researchers apply this method to find out the difference in the interest of two kinds of

groups. This test can also understand if the produced output 1s meaningless or useful.

2.4.2.4 How to do Fisher’s exact test, Relative Risk, and Odds Ratio test in SPSS

Fisher’s Exact Test: This test tends to be used when sample sizes are small, and you
want to test whether two categorical variables (for example, gender and smoking status) are

associated with each other. Steps:

1. Click on Analyze -> Descriptive Statistics -> Crosstabs
2. Drag and drop (at least) one variable into the Row(s) box, and (at least) one mto the

Column(s) box

3. Click on Statistics, select Chi-square, and then click on Continue

4. Click on Exact, and then select the Exact option, leaving the test time limit as it is
5. Press Continue, and then OK to run the test

6. The result will appear in the SPSS output viewer

Relative Risk, Odds Ratio Test in SPSS:

1. Click on Analyze -> Descriptive Statistics -> Crosstabs

2. Drag and drop (at least) one variable into the Row(s) box, and (at least) one mto the
Column(s) box

3. Click on Statistics, select Chi-square, and check the Risk box in the then click on

Continue

31

4. Press Continue, and then OK to run the test

5. The result will appear in the SPSS output viewer

32

Chapter 3

3 Methedology

This section details the phases of the preparation and the realization of the designed

experiment.
3.1 Experimental planning

The goal of this experimental evaluating 1s to study the effectiveness of the control
flow technique with the opaque predicates to increase the difficulty of reverse-engineering
the software by human attacks. The main ebjective 1s to estimate how the obfuscation
prevents or limits the ability of the attacker to alter or perform modification and understand
the source code. Our work 1s based on [27] with some different techniques as summarized

in Table 3.1.

Table 3.1: Our work VS based work

Our work Based work
Control flow obfuscation technique Renaming obfuscation technique
C# source code Java source code
Developers pretend as subjects Graduated subjects
Two c# application as objects Two java application

33

The quality focus regards how the obfuscation reduces the attacker capability to

understand and modify the source code, and how the obfuscation increases the effort

needed to successfully complete an attack.

The study definition 1s summarized in Table 3.2.

Table 3.2: Summarization of the experiment

Study the effectiveness of the control flow technique with the opaque

goal predicates to increase the difficulty of reverse-engineering the software
by human attacks.
Ability of understanding the obfuscated code.
Quality focus -
Ability to perform attacks on the obfuscated code.
Objects: two C# Application. (Login.exe and Activation.exe)
Context Subjects: Developers whom familiar with codding and developing

windows and web application.

Main factor

Obfuscation with (control flow with opaque predicates)
Obfuscated code VS clear code.

Other factors | Ability, system, subjects.
1. Ability to perform understanding tasks.
Dependent 2. Time required for understanding.
variables 3. Ability to correctly perform a change task.

4. Time required performing change task.

The context of this experiment study consists of subjects who are pretending as

attackers and objects which are the applications to be attacked. The subjects are

programmers working at Smart Vision Company for software development at Hadhramout

governorate in Yemen. These developers are familiar with coding and developing web and

desktop applications, the total number of subjects and the distribution of the tasks are

shown in Table 3.3.

34

Table 3.3: total number of subjects and the distribution of the tasks

Total subjects

Total tasks

Understanding Tasks

Modification tasks

14

44

22

22

The objects 1n the experiment are two .exe files developed using C# programming

language, where the control flow obfuscation technique is based on the Algorithm proposed

at [28]; the two applications are outlined as follows:

The first application 1s as shown in Fig 3.1. This application simulates the software

activation process. It asks the user to enter the registration number, After the user enters the

number in the text box and clicks the activation button, the program checks that number if

the activation number 1s correct the program displays a message that informs the user that

the activation is successful, and vice versa in case of wrong activation number.

o= Activation Form Clear

Activate Manually

X

Activation number ‘

Fig. 3. 1.

Activation screenshot

The second application is shown in Fig 3.2. This application simulates the software

login process. When the user runs the application, the application checks the availability of

Internet service, and then it accesses its company web site to check for any available

updates. Then the application displays the login screen. The user enters the login

credentials, a user name, and password and clicks on the login button after clicking by the

35

user. In the case of the availability of new updates, the program displays a message to the

user asking to update the program and opens the link of the new version on the browser.

@5 Login — O x

User Name [
Password [

Fig. 3. 2. Login screenshot

3.2 Research questions

The research questions in this study are formulated as follows:

1. To what degree the capability of subjects to understand source code is reduced when

the control flow obfuscation with opaque predicate 1s used?

o

To which level the control flow obfuscation increment the time required to perform

an understanding task?

3. What 1s the amount of reduction caused by the control flow technique and opaque

predicate on the ability of subjects to modify or alter the source code?

4. To which level the control flow obfuscation and opaque predicate increment the

required time to modify or alter the source code?

36

3.3

Null hypotheses

Based on the above research questions we formulated the null hypotheses to be

examined in our experiment.

L.

HO0. The control flow obfuscation does not significantly reduce the capability of

subjects to perform code understanding tasks correctly.

H1. The control flow obfuscation does not significantly increment the time required

to perform understanding tasks.

H2. The control flow obfuscation does not reduce the ability of subjects to perform a

modification task correctly.

H3. The control flow obfuscation does not significantly increment the time required

to perform modification tasks.

As we are planning to investigate the effect of control flow techniques on one side, it

1s noted that the above two null hypotheses are one-tailed. There are two dependent

variables: understanding level and success of the modification task.

For measuring the attacker’s understanding level, subjects had been requested to read

the source code and execute two understanding assignments:

What 1s the correct registration number that makes the program shows “activated”

message dialog?

When a user enters a correct registration number and activation message 1s
displayed, a compare process takes place between the value of the text box and the

mteger variable. What is the name of that integer variable and what are the values of

In order to examine the capability of the attacker to alter the source code, subjects

were requested to execute two modification tasks:

e Modify the application such that the application does not check the internet

availability.

e When users log in the application display a link of the updated version for the user to

be downloaded, modify the link to visit the Google web site.

The correctness of the attack was evaluated by testing the changed code. Subjects have
to give an answer to every task. Each correct answer 1s assigned one, while a wrong answer

das ZE€1o.

For this experiment, the obfuscation (control flow with opaque predicates) is
considered as the independent variable. In our case, there are two treatments, for example,
performing understanding and also modification on the obfuscated copy and also on the
original one of source code. So we introduced two copies of every application, one with

clear code and the other 1s obfuscated with a control flow obfuscation technique.

3.4 Experiment material and procedure

Before the experiment starts, subjects were prepared and trained about obfuscation and
performing understanding and modification tasks on the obfuscated and clearing source
code. Subjects were provided with details and explanations on every task to be executed
through the experiment. Subjects used a desktop computer with Microsoft visual studio
development environment and dot net Reflector and Reflexil, which are the tools for

debugging and editing source code.

38

The following materials were distributed to subjects:

1. A short textual description of the program (login and activation examples by C#)

they have to attack, which contains run mstructions.

2. Two .exe programs (login and activation examples by C#) one is clear and the other

1s obfuscated.

3. Explanation slides of the overall procedure of the experiment.

The experiment has been done according to the following procedure:-

1) Read the program description.

2) Run the program to be familiar with it.

3) For performing each task :

11.

11.

1v.

Ask the supervisor of the sheet that describes the task to be executed.
Note and write down the time to start.

Execute the task.

For the understanding tasks, an answer must be provided.

Note the end time and submit the sheet to the supervisor.

4) Finally, submit the maintained or the attacked program to the supervisor.

39

3.5 Analysis method

To analyze the obtained results, statistical tests have been used. To investigate the
effect of the obfuscation technique used on the correctness of the understanding and the
modification tasks, we have to utilize tests that apply to categorical data were performing
the task may results in a correct answer or wrong one. For this purpose, two kinds of
measurements were used. Firstly, measure the significant difference; secondly, calculate the

effect size between the different treatments of the experiment.
3.5.1 Measurement of the significant difference

In statistical hypothesis testing, a significant difference is used to justify whether

the null hypothesis should be rejected or confirmed.

To analyze the significant difference between the two different treatments (clear
versus obfuscation), we use Fisher's exact test [29] which 1s a statistical significance test
used to examine the significance of the association between two kinds of classifications or
differences in categorical data. In statistical difference, many alternative tests could be

used, but the Fisher test used especially in cases of small samples.

To analyze the significant difference between the amounts of time spent by subjects
for the case of modification or understanding tasks we use The Mann-Whitney U test [30].
This test 1s mostly used to compare differences between two independent groups when the

dependent variable is either ordinal or continuous, but not normally distributed.

A Mann-Whitney 1s a one-tailed test used because it is more powerful than a two-
tailed test, as we aren't considering the effect in the opposite direction. We compare the p-

value to the significance level (denoted as o or alpha) of 0.05. When P-value < a: The

40

difference between the medians is statistically significant, while if P-value > a: The

difference between the medians is not statistically significant.
3.5.2 The measure of the effect size

In statistics, the size of an effect 1s a simple way of quantifying the difference between
the two groups. It has many advantages over the use of tests of statistical significance alone.

It focuses on the size of the difference rather than focusing on sample size [31].

This method 1s more suitable because it 1s used to provide information about the
magnitude of a difference since we want to measure the extent to which the present of
obfuscation decreases the capability of the reverse engineering to successfully complete a

source code attack.

Relative risk test 1s used 1n the statistical analysis of the data of experimental studies,
to estimate the strength of the association between treatments or risk factors. It is often used
in cases where the study involves comparing the likelihood, or chance, of an event
occurring between two groups. The Relative Risk uses the probability of occurrence of an
event in one group compared to the probability of an event occurring in the other group. It
requires the examination of two dichotomous variables, where one variable measure the
event (occurred vs. not occurred) and the other variable measures the groups (group 1 vs.

group 2). Values of RR can be interpreted as follows:

RR = 1, means that the exposure does not have ef fect on the outcome.
RR < 1,means that the risk of the outcome is decreased by the exposure.
RR > 1,means that the risk of the outcome is increased by the exposure.

41

Chapter 4

4 Results

This section presents the results of this experimental study that was performed at a
smart vision company for software development at Hadhramout governorate in Yemen with
14 subjects who are familiar with web and desktop application development. The

experiment aims to assess the control flow obfuscation technique.

4.1 Taskresults

Table 4.1 reports the correct and wrong tasks for understanding and modification

tasks of the experiment.

TABLE4.l. CORRECT AND WRONG TASKS

Understanding Modification Total
Treatment
Wrong Correct Wrong Correct | Wrong | Correct
Clear 1 10 2 9 3 =
Obfuscate 7 4 5 6 12 10

4.2 Significant difference results

We examined the availability of a significant difference between the obfuscated and
clear code using the Fisher exact test, for the understanding tasks the significant difference
is available where P-value is equal to 0.0237 so this is evidence to reject the first null

hypothesis HO.

43

For the modification tasks no significant difference, where the P-value is equal to
0.3615, so we accept the third null hypothesis H2. Also for the sum of overall tasks for
understanding and modification a difference 1s available because the P-value 1s equal to

0.0097.

Fig. 4.1 shows boxplots of the average time spent by subjects to complete the tasks.
Time 1s computed, for each subject, as the average time over understanding and
modification tasks. The Mann-Whitney test showed a significant difference for the time of
understanding tasks where P-value equal to 0.001, also for modification tasks time a
significant difference was found where P-value equal to 0.0031, so these results suggest a

rejection for the null hypothesis H1 and H3.

45
40 >

30

20

10

0 Clear Obfuscated Clear Obfuscated

Understanding . Modification

Figr 4.1 Boxplots of the average time for tasks execution

44

4.3 Effect size results

After calculating the availability of difference between the two treatments, we are
mterested 1n that 1s estimating the strength of the association or the magnitude of the
difference between the clear and the obfuscated source code. For that reason, the relative

risk effect size test has been used.

The results of relative risk for understanding tasks are RR= 7 which means the
presence of obfuscation on source code increases seven times the difficulties for the

attacker to successfully complete the understanding task.

For the modification task, the RR=2.5 which means the obfuscation on source code
increases more than double times the difficulties for the attacker to successfully complete

the attack,

The overall tasks for both understanding and modification the RR= 4.

4.4 Compare the obtained results with previous studies

When comparing our results with previous study, we find that the results are close
to some extent with an inverse and very logical difference according to the nature of the
obfuscation technique used in each study.

The following table 4.1 shows a comparison between the results of our study and

a similar previous study.

45

Table 4.2: Comparison with previous study.

The results of the study at [38]

Our Results

Obfuscation Technique: Renaming

Obfuscation Technique: Control Flow

Availability of Significant Difference:
e Statistical Test: Fisher Exact test.
e For Understanding Tasks: no significant
difference was found (p-value=0.33).
e For modification Tasks: a significant
difference was found (p-value=0.009).

Availability of Significant Difference:
e Statistical Test: Fisher Exact test.
e For Understanding Tasks: a significant
difference was found (p-value= 0.023).
e For modification Tasks: no significant
difference was found (p-value= 0.36).

Availability of Magnitude Difference:

e Statistical Test: Odds Ratio.

e For Understanding Tasks: the odds ratio is
2.3, subjects having obfuscated code have
less than half of subject having clear code
to successfully complete the tasks.

e For modification Tasks: the odds ratio 1s
(7.1) Obfuscation reduces seven times the
odds of completing the attack.

Availability of Magnitude Difference:
e Statistical Test: Relative risk.

e For Understanding Tasks: the RR=7,
means that the obfuscation increases seven
times the difficulties for the attacker to
complete the understanding attack.

e TFor modification Tasks: the RR=2.5, means
that the obfuscation increases more than
double times the difficulties for the attacker
to complete the Modification attack.

Availability of Time Difference:
e Statistical Test: Mann-Whitney.
e For Understanding Tasks: a significant
difference was found (p-value=0.002).

e For modification Tasks: no significant
difference was found (p-value=0.19).

Availability of Time Difference:
e Statistical Test: Mann-Whitney.
e For Understanding Tasks: a significant
difference was found (p-value=0.001).

e For modification Tasks: a significant
difference was found (p-value=0.003).

46

Chapter 5

5 Conclusion and Future Work
In this chapter, the conclusions of the study are presented, and an outline of future

work 1deas based on this thesis is also given.

5.1 Conclusion

Code obfuscation is a useful technique to protect software against reverse engineering
attacks; Most of the obfuscation techniques are not based on well-defined measurements to
clarify their effectiveness. In this thesis, we presented an experiment aimed at assessing
confrol flow code obfuscation technique with the opaque predicates, in terms of the

capability to understand and modify obfuscated codes.

The experiment involved 14 programmers. As a result of the statistical analysis used
i this thesis, it 1s concluded that the presence of obfuscation on source code increases
seven times the difficulties for the attacker to successfully complete the understanding task.
Also the control flow obfuscation significantly decreases the capability of the attackers to
correctly perform the understanding tasks while no significant difference for modification.
Also the presence of obfuscation on source code increases the amount of time needs for

subjects to understand and modify the source code.

The results of this study will help the software developers to choose the most
appropriate and best obfuscation technique in order to protect their applications. This study
will help researchers to find out - through the experimental approach - how obfuscation

techniques are powerful and efficient in software protection.

48

5.2 Future Work
Based on the research methodology presented m this thesis, the following research

topics can be pursued:

e Performing other experiments with different settings and contexts and involving
larger sets of subjects and different other source code obfuscation techniques.

e Applymg more accurate statistical tests for analyzing the results.

e Assessment of the combined effect of different obfuscation techniques and

performing a comparative assessment of their effects.

49

References

[1] Flemming Nielson, Hanne R Nielson, and Chris Hankin. Principles of program analysis.
Springer, 2015.

[2] David Aucsmith. Tamper resistant software: An implementation. In Proceedings of the
First International Workshop on Information Hiding, pages 317—333, London, UK, 1996.
Springer-Verlag.

[3] Christian Collberg and Jasvir Nagra. Surreptitious Software: Obfuscation,
Watermarking, and Tamperproofing for Software Protection. Addison-Wesley, 2009.

[4] H. Xu, Y. Zhou, Y. Kang, M. R. Lyu , On Secure and Usable Program Obfuscation: A
Survey, Dept. of Computer Science, The Chinese University of Hong Kong ,2017.

[5] M. Kapoor , S. A. Sebastian, , P. Shah, T. Parekhji , A Review on Code Obfuscation,
World Conference on Futuristic Trends in Research and Innovation, 2016.

[6] C. K. Behera , D. L. Bhaskar1 , Different Obfuscation Techniques for Code Protection ,
ScienceDirect , 4thInternational Conference on Eco-friendly Computing and
Communication Systems , 2015.

[7] B. Barak , O. Goldreich , R. Impagliazzo , S. Rudich, A. Sahai , S. Vadhan , K. Yang ,
On the (Im) possibility of Obfuscating Programs , Journal of the ACM, 2012

[8] S. A. Sebastian, S. Malgaonkar, P. Shah, M. Kapoor, and T. Parekhji, “A study &
review on code obfuscation,” 2016 World Conference on Futuristic Trends in Research and
Innovation for Social Welfare (Startup Conclave), 2016.

[9] Z. Liang, W. L1, J. Guo, D. Q1, and J. Zeng, “A parameterized flattening control flow
based obfuscation algorithm with opaque predicate for reduplicate

obfuscation,” International Conference on Progress in Informatics and Computing, 2017.

50

[10] V. Balachandran, DJJ Tan,Control flow obfuscationfor android applications,
Computers & Security, 2016.

[11] D Xu, J] Ming, D Wu, Generalized dynamic opaque predicates: A new control flow
obfuscation method, International Conference on Information Security, 2016.

[12] Y Peng, G Su, B Tian, M Sun, Q Li, Control flow obfuscation based protection
method for Android applications, China Communications, 2017.

[13] Y Wang, S Wang, P Wang, D Wu , Turing obfuscation, College of Information
Sciences and Technology, The Pennsylvania State University, 2019 .

[14] L Zhang, H Meng, VLL ., Progressive control flow obfuscationfor android
applications Thing, TENCON IEEE conference ,2018.

[15] Y Wang, Y Shen, K Cheng, Y Yang , Poster: Obfuscating Program Control Flow with
Intel SGX m 2018 IEEE/ACM 40th ,2018.

[16] K. Z. Ming , Confrol flow obfuscation via CPS transformation, School of

Information Technology, Singapore , 2019.

[17] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations. Technical report,” Department of Computer Science, The Universityof

Auckland, New Zealand, 1997.

[18] M. Ceccato, A. Capiluppi, P. Falcarin, and C. Boldyreff, “A large study on the effect
of code obfuscation on the quality of java code,” Empirical Software Engineering, pages 1—

39, 2014.

[19] R. Mohsen, “Quantitative Measures for Code Obfuscation Security Imperial,”

Imperal College London, Department of Computing, 2016.

51

[20] A. Pawlowski, M. Contag, and T. HolzHorst, “Probfuscation: An Obfuscation
Approach using Probabilistic Control Flows,” Gortz Institute (HGI), Ruhr-University
Bochum, Germany, 2016.

[21] An Empirical Evaluation of Software Obfuscation Techniques Applied to Android
APKs 28 Effects of Code Obfuscation on Android App Similarity Analysis

[22] J. Park, H. Kim, Y. Jeong, S.Cho, S. Han, M. Park, Effects of Code Obfuscation on
Android App Similarity Analysis, Dankook University, Yongin, Korea,2019.

[23] M. Ceccato, M. D. Penta, J. Nagra, P. Falcarin, F. Ricca, M. Torchiano, and P.
Tonella, “The effectiveness of source code obfuscation: An experimental
assessment,” 2009 IEEE 17th International Conference on Program Comprehension, 2009.
[24] A. Viticchie, L. Regano, M. Torchiano, C. Basile, M. Ceccato, P. Tonella, and R.
Tiella, “Assessment of Source Code Obfuscation Techniques,” 2016 IEEE 16th
International Working Conference on Source Code Analysis and Manipulation, 2016.

[25] M. Ott and L. Held, “Bayesian Calibration of p-Values from Fishers Exact Test,”
International Statistical Review, vol. 87, no. 2, pp. 285-305, Apr, 2018.

[26] D. Werkke, N. Huaman, Y. Acer, B. Reaves, P. Traynor, S. Fahel, “A Large Scale
Investigation Of Obfusction Use In Google Play,” Annual Computer Security Applications
Conference, 2018.

[27] M. Ceccato, M. D1 Penta, J. Nagra, P. Falcarin, F. Ricca, M. Torchiano, P. Tonella
,”Assessment of Source Code Obfuscation Techniques”, 2017

[28] Z. Liang, W. L1, J. Guo, D. Qi, and J. Zeng, “A parameterized flattening control flow
based obfuscation algorithm with opaque predicate for reduplicate

obfuscation,” International Conference on Progress in Informatics and Computing (PIC),

.0 b

52

[29] M. Ott and L. Held, “Bayesian Calibration of p-Values from Fishers Exact Test,”
International Statistical Review, vol. 87, no. 2, pp. 285305, Apr, 2018.

[30] T. W. Macfarlan, J. M. Yates, “Mann-Witeny U-test, ” Introduction to Nonparametric
Statistics for the Biological Sciences Using R (pp.103-132), 2016.

[31] A.Bakker, J. Cai, L. English, G. Kaiser, V. Mesa, and W. V. Dooren, “Beyond small,
medium, or large: points of consideration when mterpreting effect sizes,” Educational
Studies in Mathematics, vol. 102, no. 1, pp. 1-8, 2019.

[32] Chikofsky, E. J.; Cross, J. H. (January 1990). Reverse engineering and design
recovery: A taxonomy. IEEE Software.

[33] Warden, R. (1992). Software Reuse and Reverse Engineering in Practice. London,
England: Chapman & Hall. pp. 283-305.

[34] Shahbaz, Muzammil (2012). Reverse Engineering and Testing of Black-Box Software
Components: by Grammatical Inference techniques. LAP LAMBERT Academic
Publishing.

[35] Schwarze, K., Schwarze, K., & Schwarze, K. Reverse Engineering Tutorial: How to
Reverse Engineer Any Software. Retrieved from https://www.udemy.com/blog/reverse-

engineering-tutorial . June 6, 2014.

[36] Tdykstra, microsoft. Ildasm.exe (IL Disassembler). Refrieved from

https://docs.microsoft.com/en-us/dotnet/framework/tools/ildasm-exe-il-disassembler.

[37] Kexugit. Ten Must-Have NET Tools Every Developer Should Download Now.

Retrieved from http://msdn.microsoft.com/en-us/magazine/cc300497.aspx

[38] M. Ceccato, M. Di Penta,J. Nagra, Towards Experimental Evaluation of Code

Obfuscation Techniques,2017.
53

List of Publications

1=

Mohammd. H. BmShamlan, Mohammed. A. Bamatraf and A. A. Zain, "The
Impact of Control Flow Obfuscation Technique on Software Protection
Against Human Attacks," 2019 First International Conference of Intelligent
Computing and Engineering (ICOICE), doi:
10.1109/ICOICE48418.2019.9035187, URL:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9035187&1snum
ber=9035128 .

Mohammd. H. BmShamlan, Mohammed. A. Bamatraf and A. A. Zain,
“(2021) Experimental Evaluation of the Obfuscation Techniques Against
Reverse Engineering”, Advances on Smart and Soft Computing. Advances
in Intelligent Systems and Computing, . Springer, , URL:

https://link.springer.com/chapter/10.1007%2F978-981-15-6048-4 33

54

