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ABSTRACT

Software Testing is an important phase in the Software Development Life Cycle, to ensure that the
verification and validation of the software meet the requirements. Also it 1s important to have a lot
of testing in this phase, before the software 1s released, to ensure that the software is bug free.
However, shipping a software with tons of bugs is something unintended behavior, and
unacceptable from the user point of view. Therefore, predicting the software bugs at the early stage
of the software development will reduce the time and cost required for testing the software, which
saves a lot of money for the companies, moreover it increases the software quality. Predicting
software bugs had some challenges, such as generating test data that had been used into the test,
and exploring the method paths. This research addresses these issues, by introducing a hybrid
approach proposed to identify the potential bugs in the source code for the method under test by
constructing an Abstract Syntax Tree model for the method, then traversing the tree and exploring
all paths to find the bugs. Hence, Smart Unit Tests are generated accurately to cover all possible
execution paths for the tested method. At the end, the proposed approach using static analysis 1s
able to predict all kinds of static bugs and generate the minimal suite of unit tests which are able
to cover all the possible execution paths for the tested code. This indicates that the proposed
approach achieves good results compared with other techniques in terms of type of bugs that can

be predicted as well as the number of generated unit tests that are required to test the code.
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CHAPTER 1: INTRODUCTION



1.1 Introduction

In Software Engineering, the system development life cycle (SDLC) is the process
for planning, creating, testing and deploying an information system (Hlongwane, 2005).
There are usually six phases in this cycle: requirement analysis, design, development and

testing, implementation, documentation and evaluation.

Software testing plays a vital role in the SDLC, which provides stakeholders with
information about the quality of the software product or service under test (Kaner, 2016).
Software testing can also provide an objective, independent view of the software to allow
the business to appreciate and understand the risks of software implementations. Test
techniques include the process of executing a program or application with the intent of
finding software bugs (errors or other defects), and verifying that the software product is
fit for use (“Software Testing,” n.d.).

During the development of a program or software, a range of measures are taken
to ensure that the program 1s tested prior to the release and distribution of the program.
These measures are aimed at reducing the number of bugs in the program in order to
improve the quality of the program (Pan, 1999; “Software Testing,” n.d.). A bug in a
software 1s an unintended state in the executing program that results undesired behavior
(Mittal & Aditya, 2015). Regardless of these measures, the program may still contain
bugs.

Detecting software bugs are tricky and not easy to accomplish, there are two
approaches to detect the software bugs before the developers can fix them: the first one
named Static program analysis which is the process of analyzing the computer software
without executing programs (Nachtigall et al., 2019; Wichmann et al., 1995). The second
one 1s named Dynamic program analysis which is the process to analyze the computer
software by executing programs on a real or virtual processor, in contrast with static
program analysis, whereas the analysis 1s performed without program execution (Myers

etal., 2011).

A bug-free software is the main reason to implement the software testing. Quality

Assurance (QA) or Software Testing i1s crucial because it identifies errors/bugs from a



system at the beginning. Considering the problems in the base helps to turn improvement

in the quality of product and brings confidence in it.

Number of

s 3 .
e Cost of Testing

Optimal amount
of Testing

l

Quality

Under Testing Over Testing

\j

Amount of Testing

Figure (1.1) Relation between Quality and Amount of Testing (Jamil et al., 2017)

According to Figure 1.1, software testing is an important component of software
QA. The importance of testing can be considered from life-critical software (e.g., flight
control), testing which can be highly expensive because of risk regarding schedule delays,

cost overruns, or outright cancellation (Jamil et al., 2017).

Hence, this research will focus on challenges in predicting the software bugs in

the early stage by scanning the Abstract Syntax Tree (AST) for the tested method.

1.2 Motivation

Software maintenance makes the corrective measures needed to fix software bugs
after the bugs are reported by end users. Fixing the software bugs after deployment of the
program hampers the usability of the deployed program and increases the cost of the
software maintenance services. A better solution would be to detect and fix the software

bugs prior to releasing the program.

Introducing a developing approach using static program analysis with an AST
model will assist to predict the software bugs in the early stage. This will reduce the
number of the expected bugs before releasing the software. However, using the AST

model will allow exploring all possible paths for the tested software, which implies to



maximize the test code coverage. This leads to discovering all possible bugs, and

increases the software quality too.

Furthermore automating the unit tests for a particular software will reduce the
human efforts and money required for the software testing, also it increases the quality of

the software after release.

1.3 Problem Statement

As mentioned before any software may contain bugs during its life cycle, which

of course affects the quality of the software.

Code coverage 1s one of the critical problems in software testing because the

prediction of all different use cases - that program may contain - is very complex.

Increasingly, discovering bugs in software by using the manual process requires
a solid and robust software testing that costs the companies a lot of money. Also the time
required for writing plenty of unit tests for a software needs an exhaustive human effort

to accomplish this process.

1.4 Objectives

The objectives of this research relate to enhancing the quality of the software. In

more detail the objectives are as follows:

1. To Increase the software quality, by predicting the software bugs at the early stage
of the SDLC.

2. To develop a technique using static analysis and AST model to predict software
bugs effectively.

3. Toward to achieve maximum code coverage by traversing the entire AST for the
method under test (MUT).

4. To reduce the time required for discovering the software bugs and money cost of

the software testing by automating the unit tests.



1.5 Scope & Limitations

The scope of this research is limited to predict the static bugs in the early stage of
software development. Because the important thing for now is, to create a proof of
concept for the proposed technique and get good results compared with alternative static
analysis techniques. So, there are some limitation for this thesis that needs to be addressed

in the future work as follows:

- Predict all static bugs that the software may have, so all the bugs that depend on

the environment are out of scope.

- Predict the software bugs in the procedural programming languages.

1.6 Research Approach

In this research there are required steps to accomplish the research methodology
as shown in Figure 1.2, starts from identifying the problem that the research addresses

and ends with the evaluation.

Problem Identification

\Z

Analysis of Current Techniques

X

Proposed Method

X7

Implementation (Predicting the Software Bugs)

N

Testing

\Z

Evaluation

Figure (1.2) Research Approach



1.6.1 Problem Identification

The research will start with identifying the problem, that all the software in
industry may contain bugs. The role of the software testing is to avoid such bugs in
production. So, predicting such bugs in the early stages of the SDLC will save time and

cost that is spent by the companies, also it improves the software quality.

1.6.2 Analysis of Current Techniques

The research will review both static and dynamic analysis techniques that are
available, also it will address the techniques that had been used to generate the test data.
This includes analyzing each technique, the methodology that has been used, and

strengths and weaknesses.

1.6.3 Proposed Method (Research Method)

Based on analysis of the current techniques, this step will be proposed in order to
achieve the research objectives. This will address the overall design structure, including

all the phases required to predict the software bugs.

1.6.4. Implementation (Predicting the Software Bugs)

In this step, the researcher will discuss the implementation details of applying the
proposed method with all the criteria and algorithms that have been described in the
research method, including test data generation, program exploration and result

generation.

1.6.5 Testing

Last but not least, the research will test the prototype of the proposed method,

after the implementation to compute and measure the results according to some factors.

1.6.6 Evaluation

Finally, the research will evaluate the concluded results, compare them with the
current techniques and discuss the outcomes to ensure that the proposed technique

achieve good results.



1.7 Research Contribution

A hybrid technique has been proposed to overcome the challenges and issues of

predicted software bugs without human interference.
The key contributions of this thesis are as follows:

- Proposing hybrid technique for predicting the software bugs using static analysis

and AST.

- Improving the selection and generation for the test data that will predict the bugs

more accurately.

1.8 Thesis Organization

The rest of thesis 1s organized into five chapters:

Chapter 2 discusses a background of software testing including testing types,
methods, approaches, levels and how it affects the software quality. Also it highlights the

research problem, objectives and motivations.

Chapter 3 covers the literature survey of static and dynamic analysis techniques.

Including how they work, also their strengths and weaknesses.

Chapter 4 discusses the methodology and design of the proposed Smart Unit
Tests (SUTs) using AST. The proposed technique for selecting data under test and the

path exploration are introduced and discussed mathematically in this chapter too.

Chapter S discusses the implementation for the proposed approach, including the

tools that are used, also research experiment results, will be analyzed and discussed.

Chapter 6 summarizes the research findings, research conclusion, and the

possible future work for this research.



CHAPTER 2: BACKGROUND



2.1 Introduction

This chapter discusses several definitions and concept techniques that related to
the software testing, including the importance of the testing as well as testing methods,

approaches and levels.

In addition, unit testing is discussed in detail including the advantages and
disadvantages of the unit testing, Parameterized Unit Tests (PUTs) and various unit

testing tools and frameworks.

2.2 Testing

In systems engineering, information systems and software engineering, the SDLC,
also referred to as the application development life-cycle, i1s a process for planning,
creating, testing, and deploying an information system (Hlongwane, 2005). The SDLC
framework provides a sequence of activities for system designers and developers to
follow. It consists of a set of phases in which each phase of the SDLC uses the results of

the previous one (Everatt & McLeod Jr., 2007; US Department of Justice, 2003).

The SDLC adheres to important phases that are essential for developers such as planning,
analysis, design, implementation, testing, deployment and maintenance as shown in

Figure 2.1.



Planning

0 .
Deployment o

Implementation

Figure (2.1): SDLC Phases

Software testing 1s unavoidable part of the SDLC. It is a process, to evaluate the
functionality of a software application with an intent to find whether the developed
software met the specified requirements or not and to identify the defects to ensure that

the product 1s defect free in order to produce the quality product (Rajkumar, 2021).
2.2.1 Testing Types
Any software could be tested by one of the following testing types:

Manual Testing is the process of testing the software manually to find the defects.
Testers should have the perspective of end users and to ensure all the features are working
as mentioned in the requirement document. In this process, testers execute the test cases

3

and generate the reports manually without using any automation tools (“Manual Testing,’

n.d.).

Automation Testing is the process of testing the software using automation tools
to find the defects. In this process, testers execute the test scripts and generate the test

results automatically by using automation tools (Huizinga & Kolawa, 2007).

10



2.2.2 Testing Methods

Whether the software is tested manually or automatically using some tools, is not
less important to verify and validate the final product. Here where the testing methods

come into play to ensure the software quality.

There are two testing methods are as follows (Difference between Verification and

Validation,n.d.):

Static Testing (Verification) is a static practice of verifying documents, design,
code and program. It includes all the activities associated with producing high quality
software: inspection, design analysis and specification analysis. It is a relatively

objective process.

Dynamic Testing (Validation) is the process of evaluating the final product to
check whether the software meets the customer expectations and requirements. It is a

dynamic mechanism of validating and testing the actual product.

2.2.3 Testing Approaches

The first step in the testing process is to generate test cases. The test cases are
developed using various testing approaches or techniques, for the effective and accurate

testing. The major testing approaches as shown in Figure 2.1 are as follows:

White Box Testing is significantly effective as it is the method of testing that not
only tests the functionality of the software but also tests the internal structure of the
application. This kind of testing can be applied to all levels including unit, integration or

system testing (Limaye Milind G., 2009; Saleh, 2009).

Black Box Testing is a testing technique that essentially tests the functionality of
the application without going into its implementation level details (Patton, 2005). This

technique can be applied to every level of testing within SDLC.

Gray Box Testing is the combination of the White Box and Black Box Testing

TR [ - . 1 L 1 iy j I 1 i B | VS

echmiques serving the advantages of both. The tester wiil often have access to boil

==t
-
=
=

source code and the executable binary" (Ransome & Misra, 2018).

11
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Figure (2.2) Testing Approaches
2.2.4 Testing Levels

Although the testing approaches are needed for test cases development, it is very

jY
levels. There are at least three levels of testing as shown in Figure 2.2 listed by

chronological order as the following (“Software Testing,” n.d.):

12



Unit Testing refers to tests that verify the functionality of a specific section of
code, usually at the function level. In an object-oriented environment, this is usually at

the class level and the minimal unit tests include the constructors and destructors.

Integration Testing i1s any type of software testing that seeks to verify the

interfaces between components (modules) against a software design.

System Testing tests a completely integrated system to verify that the system

meets its requirements.

ystem

Testing

Integration Testing

No. of components

Unit Testing

Y

No. of tests

Figure (2.3) Testing Levels

These types of tests are usually written by developers as they work on code (white-
box style), to ensure that the specific function is working as expected. One function might

have multiple tests, to catch corner cases or other branches in the code.

Unit testing cannot verify the functionality of a piece of software alone, but rather
1s used to ensure that the building blocks of the software work independently from each

other.

13



2.3  Unit Testing

Unit tests are typically automated tests written and run by software developers to
ensure that a unit of an application meets its design and behaves as intended (Hamill,
2004). To 1solate 1ssues that may arise, each test case should be tested independently.
Stubs, mocks and fakes can be used to assist testing a module in i1solation. Examples of

unit tests written in C# are as follows:
Example 1:

[ Test]
public void AddTwoPositiveNumbers()
{
// Arrange
mta=2;
mtb=3;
// Act
mtc=a+b;
/I Assert
Assert. True(c > 0);
Assert. Equal(5, ¢);

Example 2:

[ Test]
public void MultipINumberByZerolIsZero()
{

// Arrange

mta=2;

// Act

mtb=a*0;

/I Assert

Assert. True(c = 0);
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Example 3:

[ Test]
public void DivideByZeroShould ThrowsException()
{

// Arrange

mta=>5;

mtb=0;

/] Act & Assert

Assert. Throws<DivideByZeroException>(() =>

{

varc=a/b;

1)

2.3.1 Parameterized Unit Tests

Wiiting and maintaining unit tests can be made faster by using PUTs. These allow
the execution of one test multiple times with different input sets, thus reducing the code
duplication. Unlike unit tests, which are usually closed methods and test invariant
conditions, PUTs have been supported by JUnit, xUnit... etc. In recent years support was
added for writing more powerful unit tests, leveraging the concept of theories, test cases
that execute the same steps, but using test data generated at runtime, unlike the regular
parameterized tests that use the same execution steps with input sets that are predefined
(Getting Started with XUnit.Net (Desktop), n.d.; Parameterized Tests, n.d.; Theories,

n.d.). An example written in C# shows PUTs in action is as follows:
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Example 4:

[DataRow(2, 3, 5)]

[DataRow(7, 1, 8)]

[DataRow(5, 6, 11)]

public void AddTwoPositiveNumbers(int a, int b, int result)

{
// Arrange

/I Act

mtc=a+b;

/I Assert
Assert. True(c > 0);
Assert. Equal(result, c);

2.3.2 Advantages & Disadvantages of Unit Testing

There are some advantages for using unit testing are as follows:

- Unit testing finds problems early in the development cycle.

- Unit testing allows the programmer to refactor code or upgrade system libraries

at a later date, and make sure the module still works correctly.

- Unit testing may reduce uncertainty in the units themselves and can be used in a
bottom-up testing style approach. By testing the parts of a program first and then testing

the sum of its parts, integration testing becomes much easier.

- Unit testing provides a sort of living documentation of the system. Developers
looking to learn what functionality is provided by a unit, and how to use it, can look at

the unit tests to gain a basic understanding of the unit's interface (API).

One the other hand, there are some disadvantages or limitation for using unit testing are

as follows:
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- Testing will not catch every error in the program, because it cannot evaluate

every execution path in any but the most trivial programs.
- It will not catch integration errors or broader system-level errors

- Writing the unit tests 1s the difficulty of setting up realistic and useful tests
(Kolawa, 2009).

- Unit testing embedded system software presents a unique challenge, because the
software 1s being developed on a different platform than the one it will eventually run on

(Kucharski, 2011).
2.3.3 Unit Testing Frameworks

There are many unit testing frameworks available that simplify the process of unit
testing such as xUnit, NUnit, JUnit, MSTests, Typemock Isolator, JustMock... etc. Some

of them are open source and some are commercial solutions (Hamill, 2004).

In general it is possible to perform unit testing without support of a specific
framework by writing client code that exercises the units under test and uses assertions,

exception handling or other flow control mechanisms to signal failure.

2.4 Summary

This chapter has presented the background of software testing in general, the role that
plays in SDLC. It also described how software testing is very important for QA. After
that, it discusses related terminologies and concepts mcluding: testing types, methods,
approaches and levels. Finally, it ends with the unit testing in more details, including the

importance, tools and frameworks.
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CHAPTER 3: LITERATURE REVIEW



3.1 Introduction

This chapter reviews the related literature, it begins with introducing both static
testing and dynamic testing, and including the techniques used for each. Then, it shows
the differences between them. After that, it discusses the static analysis techniques and

explains each one of them. Finally, it ends up with the research gap.

3.2 Static Testing

Static testing 1s a type of a software testing method which is performed to check
the defects in software without actually executing the code of the software application.
Rather 1t manually checks the code, requirement and design documents to find errors

(“Software Testing | Static Testing,” 2019).

Static testing 1s performed in the early stage of development to avoid errors as it
1s easier to find sources of failures and it can be fixed easily. The errors that cannot be

found using Dynamic Testing, can be easily found by Static Testing.

The main objective of this testing is to improve the quality of software products
by finding errors in the early stages of the SDLC. This type of testing is also known as

verification testing.

Static testing involves manual or automated reviews of the documents. This
review is done during an initial phase of testing to catch defects early in Software Testing
Life Cycle (STLC). It examines work documents and provides review comments.

Examples of Work documents as follows:

e Requirement specifications
¢ Design document

o Source Code

o Test Plans

o Test Cases

o Test Scripts

T ~=- T T

iy macind
. rcip o1 uscl aocument
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3.3 Static Testing Techniques

There are different techniques available for the static testing as the following

(Myers etal., 2011):
3.3.1 Informal Reviews

This type of review does not follow any process to find errors in the document.

You just review the document and provide informal comments.
3.3.2 Technical Reviews

A team consisting of peers, review the technical specification of the software
products and check whether it 1s suitable for the project. They try to find any conflict in
the specifications and standards followed. This review concentrates mainly on the

technical documentation related to the software.
3.3.3 Walkthrough

The author of the work product explains the product to his team, participants can

ask questions if any, notes of the review comments are written.
3.3.4 Inspection

The main purpose is to find defects and the meeting is led by a trained moderator.
Reviewers have a checklist to review the work product, they record the defect and inform

the participants to rectify those errors.
3.3.5 Static Code Review

This 1s a systematic review of the software source code without executing the
code. It checks the code syntax, standards, optimization, etc. This 1s also known as white

box testing, and this review can be done at any point during the development.
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3.4 Dynamic Testing

Dynamic testing 1s a type of a Software Testing method which is performed to
check the defects in software with executing the code of the software application. It
checks for functional behavior of the software system, memory / Central Processing Unit

(CPU) usage and overall performance of the system (Myers et al., 2011).

The main objective of this testing is to confirm that the software product works in
conformance with the business requirements. This type of testing is also known as

validation testing.

Dynamic testing executes the software and validates the output with the expected
outcome. It can be performed at all levels of testing and it can be either black or white

box testing.

3.5 Dynamic Testing Techniques

There are different techniques available for the dynamic testing as the following (Myers

etal., 2011):
3.5.1 Unit Testing

Under Unit Testing, individual units or modules are tested by the developers. It

involves testing of source code by developers.
3.5.2 Integration Testing

Individual modules are grouped together and tested by the developers. The

purpose is to determine what modules are working as expected once they are integrated.

3.5.3 System Testing

System Testing 1s performed on the whole system by checking whether the system

or application meets the requirement specification document.
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3.5.4 User Acceptance Testing (UAT)

Acceptance Testing is performed from user point of view atuser’s end. Also, Non-
functional testing like performance, security testing fall under the category of dynamic

testing.
3.6 Difference between Static Testing and Dynamic Testing

However, both Static Testing and Dynamic Testing are important for the software
application. There are a number of strengths and weaknesses associated with both types
of testing which should be considered while implementing these testing on code as shown

in Table 3.1.

Table (3.1) Difference between Static and Dynamic Testing (Static Testing vs. Dynamic Testing, n.d.)

Testing Type | Static Testing Dynamic Testing

Property

Execution Testing was done without Testing 1s done by executing
executing the program the program

Process This testing does the Dynamic testing does the
verification process validation process

Defects Static testing 1s about Dynamic testing is about
prevention of defects finding and fixing the defects

Outcomes Static testing gives an Dynamic testing gives
assessment of code and bugs/bottlenecks in the
documentation software system

Input Static testing involves a Dynamic testing involves test
checklist and process to be cases for execution
followed

Testing Time This testing can be performed | Dynamic testing is performed
before compilation after compilation

Purpose Static testing covers the Dynamic testing techniques
structural and statement are Boundary Value Analysis
coverage testing & Equivalence Partitioning
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Table 3.1: Continued

highly recommended for good

quality

Cost Cost of finding defects and Cost of finding and fixing
fixing 1s less defects 1s high

Return on Return on investment will be | Return on investment will be

investment high as this process involved | low as this process involves
at an early stage after the development phase

Recommendations | More reviews comments are | More defects are highly

recommended for good quality

No. of Meetings

Requires loads of meetings

Comparatively requires lesser

meetings

3.7

Static Analysis Techniques

(Gosain & Sharma, 2015) classified the techniques for the static analysis

approach as follows:

3.7.1 Syntactic Pattern Matching

(Pendergrass et al., 2013) discussed the general idea of syntactic pattern matching.

This technique 1s the fastest and easiest technique for static analysis, but it provides a little

confidence in program correctness and can result in a high number of false alarms. This

technique 1s based on the syntactic analysis of a program. In terms of bug finding, this

technique defines a set of program constructs that are potentially dangerous or invalid and

then searching in the program’s AST for instances of any of these constructs.

A common example for C# programs is a pattern to prevent the use of an

assignment expression, <lhs>= <expr>, as the condition of an if-else block illustrated by

Figure 3.1, in which a program intends to use the comparison operator “=="to determine

whether the two sides of the expression are equal rather than using the assignment

operator “=" to assign the value of the right hand side to the variable given by the left

hand side.
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if(n=4)

}

else

{

// will never get here

Figure (3.1) Mistaken use of <lhs> = <rhs> in an if-else construct.

However, this pattern does represent perfectly valid C# code and may be used
intentionally by a programmer, as shown in Figure 3.2, to assign a variable and branch

based on whether the new value is false.

if (n = stk.Peek())

{
// do this if n = true, 1.e., if the top element of the stack is true
}
else
{
// do this if n = false, 1.e., if the top element of the stack is false
}

Figure (3.2) Intentional use of <lhs> = <rhs> in an if-else construct

3.7.2 Data Flow Analysis

(Kam & Ullman, 1976; Kennedy, 1981; Kildall, 1973) discussed the general of
the data flow analysis. This technique is the most popular one. It constructs a graph-based
representation of the program called control flow graph (CFG), and writes data flow
equations for each graph node. These equations are then repeatedly solved to calculate
output from input at each node until the system of equations stabilizes or reaches a fixed
point. The major data flow analysis used are reaching definitions, live variable analysis,

available expression analysis and very busy expression analysis.
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At each source code location, data flow analysis records a set of facts about all
variables currently in scope. In addition to the set of facts to be tracked, the analysis
defines a “kills” set and a “gens” set for each block. The “kills” set describes the set of
facts that are invalidated by execution of the statements in the block, and the “gens” set
describes the set of facts that are generated by the execution of the statements in the block.
To analyze a program, the analysis tool begins with an initial set of facts and updates it
according to the “kills” set and “gens” set for each statement of the program in sequence.
Although mostly used in compiler optimization (Kam & Ullman, 1976; Kennedy, 1981),
data flow analysis has been an integral part of most static analysis tools (Bush et al., 2000;

Das et al., 2002).
3.7.3 Abstract Interpretation

(Cousot & Cousot, 1979, 1977) formalized the abstract interpretation technique
It 1s a theory of semantics approximation of a program based on monotonic functions

over ordered sets, especially lattices.

Abstract interpretation is a generic term for a family of static analysis techniques
that includes both type systems and data flow analysis, among others. In abstract
interpretation, a program’s variables are assigned values from an abstract domain, and the
program is executed on the basis of modified semantics for how each language construct
applies in this new domain. For example, whereas an inf variable may typically take on
any concrete integer value in the range [-2731, 2731), in abstract interpretation the
variable may be given a value of -, 0, +, or ? indicating only the sign of the variable (where
“?” indicates an unknown or indeterminate value). Operators such as < are given meaning
for this new domain, as shown in Table 3.2. Moving away from concrete values and
operators allows automated analysis tools to evaluate programs’ meanings in terms of the
higher-level abstract domains. This ensures that the analysis will actually terminate on all

mput programs (Pendergrass et al., 2013).
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Table (3.2) Abstract interpretation rules for the < operator over the domain {-, 0, +, ?} (Pendergrass et al.,

2013)
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Input 2
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Abstract interpretation 1s a powerful tool in program analysis because it can be
used to verify many important program correctness properties, including memory, type,
and information-flow safety. The primary challenge to applying abstract interpretation is
the design of the abstract domain of reasoning. If the domain is too abstract, then precision
1s lost, resulting in valid programs being rejected. If the domain is too concrete, then

analysis may become computationally infeasible.

3.7.4 Constraint-Based Analysis

(Aiken, 1999) provides an overview of constraint-based program analysis. This
technique traverses a program, emitting and solving constraints describing properties of
a program. This technique works in two steps. The first step, called constraint generation,

produces constraints from a program text that give a declarative specification of the
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desired information about the program. The second step is constraint resolution (i.e.,

solving the constraints) then computes this desired information.
3.8 Miscellaneous Techniques
There are some miscellaneous techniques which are related as follows:

3.8.1 Symbolic Execution

(King, 1976) described the symbolic execution technique. In this method, instead
of supplying normal inputs to the program, one uses symbols representing arbitrary
values. The execution proceeds as in a normal execution except that the values are now
symbolic formulas over input values. As a result, the output values computed by a
program are expressed as a function of the input symbolic values. The state of a
symbolically executed program includes the symbolic values of program variables, a path
condition (PC) and a program counter. The path condition is a quantifier-free Boolean
formula over the symbolic inputs; it accumulates constraints which the inputs must satisfy

in order for an execution to follow the particular associated path.
3.8.2 Theorem Proving

(Floyd, 1967; Hoare, 1969) proposed a theorem proving which is based on the
deductive logic. A program statement S is represented as a triple {p}S{q}, where p
(precondition) and g (post-condition) are logical formulas over program states. This triple
1s valid iff for a state 7 satisfying formula p, executing S on 7 yields a state t’ which satisfies
g. Various inference rules are then used to verify system states. One of the most famous
theorem provers is Simplify which has been used in tools like ESC/Java (Das et al., 2002;
Detlefs et al., 2005; Floyd, 1967; Hoare, 1969).

3.9 Difference between Static Analysis and Static Testing

Although static analysis and static testing are important for the software
application, there are some advantages and disadvantages for each one of them, which

are summarized in Table 3.3.
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Table (3.3) Comparison of Static Analysis and Testing (Gosain & Sharma, 2015)

Analysis Type | Static Analysis Static Testing

Property

Execution Can be applied without Can be applied only by
executing the code executing the code

Time Can be applied early in the Is applied late in the
development process development process

Results Results do not depend on Results depend on inputs

dependency inputs

Results Results can be generalized for | Results cannot be generalized

Generalization future executions for future executions

Cost Less costly Very costly

Process Very fast process Slow process

False-positive rate | False-positive rate is very False-positive rate is very less
high

Usage Approximations are used Exact results are used

Functional Cannot be used for functional | Can be used for functional

correctness correctness of programs correctness of programs

3.10 Dynamic Analysis Techniques

There are many techniques available for the dynamic analysis approach are as

follows:

3.10.1 Instrumentation Based

(Larus & Ball, 1994) described that a code mstrumenter is used as a pre-processor
to insert instrumentation code into the target program. This instrumentation code can be
added at any stage of the compilation process.

3.10.2 VM Profiling Based

(Binder et al., 2009) discussed that the dynamic analysis is carried out using the
profiling and debugging mechanism provided by the particular virtual machine.
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Examples include Microsoft CLR Profiler (Hilyard, 2005) for .NET frameworks and
JPDA for Java SDK. These profiles give an insight into the inner operations of a

program, specifically related to memory and heap usage.

3.10.3 Aspect Oriented Programming (AOP)

(Kiczales, 1997) described that AOP is a way of modularizing crosscutting
concerns much like object-oriented programming (OOP) is a way of modularizing
common concerns. With AOP, there is no need to add instrumentation code as the
instrumentation facility is provided within the programming language by the built-in

constructs.

3.11 Testing Data Generation Techniques

Alongside with the above techniques, it is important to mention the test

generation techniques while they are related. The closest ones are as follows:

3.11.1 Feedback Directed Random Testing (FDRT)

(Pacheco, C., et al 2007) introduced a FDRT approach which is creating method
sequences incrementally, and using the runtime information to guide the generation.
RANDOQOP for Java is using FDRT as a tool that automatically generates random, but

meaningful unit tests for Java.

3.11.2 Program Exploration (PEX)

(Tao Xie, et al, 2009) discussed PEX which is a white-box test generated tool as

a part of Microsoft Research.

PEX in nutshell using a dynamic Symbolic Execution technique with fitness-
guided path exploration. The Fitness Function (Fitnex) which was introduced in PEX i1s
a key player in the entire Microsoft PEX Framework as search strategy to reduce the

amount of exhaustive search required during the path exploration process.

3.11.3 Directed Automated Random Testing (DART)

(Patrice Godefroid, et al, 2011) introduced DART which combines three
techniques: automated interface extraction, automatic generation of a test driver for
random testing and dynamic test generation to direct execution along alternative program

paths.
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3.12 Critical Evaluation on Existing Approaches

According to the reviews that are mentioned previously for static and dynamic analysis
techniques, it concludes that there are some advantages and disadvantages for each
approach. Tables 3.4, 3.5, 3.6 summarizes all the techniques listed before including their

strengths and weaknesses.
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Table (3.4) Summary of Static Analysis Techniques

Author(s), Year | Method Name Methodology Strength Limitation

(Pendergrass et | Syntactic Pattern | ¢  Defines a set of program e Easy e Provides a little

al., 2013) Matching constructs (pattern) that are e Fast confidence in
potentially dangerous or invalid program coirectness
and then searching in program’s e Canresult in a high
AST for instances for such number of false
pattern alarms

(Kam & Ullman, | Data Flow e Constructing a graph-based e Most popular e Have sets of data-flow

1976; Kennedy, | Analysis representation of the program e Mostly used in values which can be

1981: Kildall,
1973)

(CFG) and writing data flow
equations for each node of the
graph. These equations are then
repeatedly solved to calculate
output from input at each node
locally until the system of
equations stabilizes or reaches a

fixed point

compiler

optimization

represented as bit
vectors are called bit
vector problems, gen-
kill problems, or
locally separable

problems
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Table 3.4: Continued

(Cousot &
Cousot, 1979,
1977)

Abstract
Interpretation

Program’s variables are
assigned values from an
abstract domain and the
program 1s executed on the
basis of modified semantics for
how each language construct

applies in this new domain

Can be used to
verify many
important program
properties including
memory, type and
mformation flow

safety

e If the domain 1s too
abstract then
precision is lost,
resulting mnvalid
programs been
rejected

e If the domain too
concrete then analysis
may become
computationally

infeasible

(Aiken, 1999)

Constraint-Based
Analysis

Traverses a program, emitting
and solving constraints
describing properties of the a

program

Algorithms used in
constraint resolution
can be written
independently of the
eventual constraint

system used

e The precision of the
analysis can be
improved by combine
it with data flow

analysis
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Table 3.4: Continued

(King, 1976) Symbolic Symbolic values are provided Achieve high e Path explosion,
Execution mstead of concrete once. The program coverage symbolically

execution proceeds as in normal Provide per-path executing all feasible
execution except that the values correctness program paths does
are now symbolic formulas over guarantees not scale to large
mput values. As a result the programs
output values computed by a
program are expressed as a
function of the input symbolic
values

(Floyd, 1967; Constraint-Based Based on the deductive logic Suited for the Difficult to

Hoare, 1969) Analysis solving the implement

complicated Limited to the

program branches

features that most of
the theorem solvers

provide

e Not all of the program

statements can be

satisfied and solved
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Table (3.5) Summary of Dynamic Analysis Techniques

Author(s), Year Method Name | Methodology Strength Limitation
(Larus & Ball, Instrumentation | e  Insert instrument code via pre- e Gives unlimited e Runtime overhead
1994) Based processor freedom to record e Dynamic
any event mstrumentations
in the application requires a
recompilation
e Bytecode

mstrumentation 1s

harder to implement

(Binder et al., VM  Profiling | ¢ Using profiling and debugging e Simple High runtime

2009) Based provided by a VM e FEasy overhead
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Table 3.5: Continued

(Kiczales, 1997)

Aspect Oriented

Programming

Modularization crosscutting
concerns such as logging,

configurations ... etc.

Easy, because the
level of abstraction
1s OOP

e Design deployment
overhead of using the
framework

e Extensive and contains
variety of
configuration and

deployment options
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Table (3.6) Summary of Test Data Generation and Program Exploration Techniques

Author(s), Year Method Name | Methodology Strength Limitation
(Pacheco et al., FDRT e (Creates method sequences e Achieved equal or e Test data are
2007) mcrementally higher code randomly generated
e Using the runtime information to coverage in less time | ¢  The classes under
guide the generation e Revealed more test need to be
e Avoid illegal inputs errors provided as input
e Avoid generating
illegal and redundant
mputs that
dominates the space
of possible test
mputs
(Xie et al., 2009) PEX e Dynamic Symbolic Execution e Fitnex was e Complexity

(DSE)
e Fitness Function to guide path

exploration

mtroduced to reduce
the amount of

exhaustive search
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Table 3.6: Continued

(Godefroid et al.,
2005)

DART

Automated extraction of the
mterface of a program with its
external environment using
static source-code parsing
Automatic generation of a test
driver for this interface that
performs random testing to
simulate the most general
environment the program can
operate in

Dynamic analysis of how the
program behaves under random
testing and automatic
generation of new test inputs to
direct systematically the
execution along alternative

program paths

Testing can be
performed
completely
automatically on any
program that
compiles, there 1s no
need to write any
test driver or harness

code

e Test data are randomly

generated
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3.11 Remarks

As described previously and according to the findings, there is lack in tree-based
approaches. Also there is no technique used for the AST except the syntactic pattern
matching which was discussed earlier. Even though, this technique only defines a set of
patterns that are potentially dangerous or invalid, but provides a little confidence in

program correctness that can result in a high number of false alarms.

This research proposed a developing approach for path analysis for given methods
that need to be tested by using an AST to explore all the branches effectively and predict
all the bugs. The proposed technique is a tree-based that solves two major issues: 1. Test
data generation, 2. Program path exploration by combining the power of concolic
execution - that will be explained in detail in the next chapter - and AST model
representation for the program. So, the proposed approach gives the advantages of the

syntactic pattern matching and more.

3.12 Summary

In software development methodology, both verification and validation processes are
carried out to certify that the final software has all the requirements implemented

correctly.

On other hand, static analysis techniques are quite often used in many code analysis tools
in the industry, for many reasons including: code refactoring, code inspection and much
more. Consequently, realized that there is a need to introduce a developing technique for
static code analysis that is based on the AST model which can be constructed in almost

all programming languages.
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CHAPTER 4: RESEARCH METHODOLOGY



4.1 Introduction

This chapter introduces the proposal technique for bug’s prediction using a tree-based
approach. At the beginning, it gives an overview about the entire design for the proposed
technique. Then, 1t explains each phase of the overall design in more detail. After that, 1t discusses
program analysis and execution techniques. Finally, it ends up with path exploration and code

coverage.
4.2 Empirical Study Definition and Design

Based on all the problems and issues that mentioned previously, this research proposed a
hybrid approach for predicting the software bugs that may miss or occur for certain circumstances
by making a static analysis for the source code of the methods that need to be tests, after

constructing an AST model.

A suite of unit tests will automatically be generated, after exploring all the possible paths

and finding out where are the places that lead the program to crash or raise a bug.
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Figure (4.1) Overview of the Empirical Study Design
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The empirical study design shown in Figure 4.1 consists of three phases

described as the following:

4.2.1 Model Construction

The first phase is concerned about the model creation and construction, which is

a very important process that assists the bug predictor to find the bugs.

The model is basically in the form of tree representation — which is in this case an
AST - for the MUT. Constructing an AST needs a sort of compiler like tool to create the

syntax tree for a given source code.

Analyze certain program code has two essential operations in order to construct

an AST which are lexical and syntax analysis respectively.
A. Lexical Analysis (Lexing)

Lexical analysis 1s the process of converting a source code of a program into a
sequence of tokens (lexemes), each token is a data structure that represents a particular
type such as identifiers, keywords, and operators (“Lexical Analysis,” n.d.). A program
that performs lexical analysis usually named lexer, tokenizer or scanner (4natomy of a

Compiler and The Tokenizer, n.d.).

Tokens 1s basically a string with identified meaning. It is structured as a pair that
consists of a token name and optional token value (Aho et al., 2007; Thain, 2020).

Common token names are as follows:

e Identifier: names chosen by the programmers;

e Keyword: names reserved in the programming language;

e Separator: punctuation characters and paired delimiters;

e Operator: symbols that operate on arguments and produce results;
e Literal: numeric, logical, textual, reference literals;

e Comment line, block

Table 4.1 shows some examples of the tokens and their values.
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Table (4.1) Examples of Token Values

Token Name Token Value
Identifier X, color

Keyword if, while

Separator ¥

Operator +, -

Literal true, “hello”
Comment // Simple comment

Example 1: Consider the following C# expression:

ia=bt4d/c

The lexical analysis of this expression yields the following sequence of tokens:

(1dentifier, ¢), (separator, ;)]

[(identifier, a), (operator, =), (identifier, b), (operator, +), (literal, 4), (operator, /),

B. Syntax Analysis (Parsing)

Syntax analysis is the process of analyzing a string of symbols conforming to the
rules of a formal grammar. A program that performs syntax analysis is usually named

parser (“Parsing,” n.d.).

Continuing with the previous example the parser will group the tokens which are
generated by the lexer and construct a syntax tree for each statement in the source code
with respect of the Context Free Grammar (CFG) which is a list of rules that formally
describe the allowable sentences in a language, Figure 4.2 and Figure 4.3 show the CFG

and an AST for the example that mentioned earlier.
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<A - expression> ;= <A - expression> + <Al1>| <A - expression> — <A 1> | <Al>
<Az =<Al=*<A%> | <Al <A0> | <AD>

<A2> ::= <identifier> | <number>

<identifier> ::= letter (letter | digit|"' ")

<number> ::= sign? digit+

<letter> ::= [a-zA-Z]

<digit> ::=[0-9]

<sign> :="+'| -

Figure (4.2) Grammar for Assignment Statement

Figure (4.3) AST for Simple Assignment Statement

Example 1 shows a single assignment statement, but in reality the method may
contains tons lines of code that have a giant AST, but the process is still the same. Figure

4.4 1llustrates the entire process of AST model construction that explained previously.
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N“ﬁ/ AST /

Yes

Tokenize Statement

End

ParseStatement

Figure (4.4) Flowchart Diagram for AST Model Construction
4.2.2 Bug Prediction

After the AST has been constructed, it is the time to start the second phase which
1s concerned about evaluating the syntax tree with test data and looking forward to

predicating any sort of bugs that MUT has.

Choosing test data is one of the challenges in this research. As mentioned
previously there are many techniques available for generating the test data, so the
proposed method suggested in this research is to use concolic execution technique — that
will be explained in more details in the next section - over the others because it has the
advantages of the static analysis and symbolic execution technique. After the data have
been generated, each path is examined with the test input to explore all the possible paths

in the syntax tree.
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Path exploration process indeed is another challenge, because not all the paths are
feasible 1n almost all cases, nothing but the path exploration will be guided with the test

data and path constraints to achieve a high code coverage and expected results.

Figure (4.5) AST for a simple assignment statement that contains a bug

Continuing with Example 1, an obvious bug has been detected in 4 / ¢ as shown
in Figure 4.5, because all knows if the ¢ = 0 the program will crash at this point and will

throw DivideByZeroException.

The path exploration process will be discussed later including the technique that
has been used, and how we can achieve a very good code coverage to ensure we addressed

almost if not all the paths in a given AST. Figure 4.6 illustrates the entire process for
finding the bugs in the tested method.
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Figure (4.6) Flowchart Diagram for Bug Finding
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4.2.3 Report Generation

Finally, after almost — if not all - the code branches have been discovered, and all
the bugs have been detected, it is time report those bugs and generate a proper suite of
unit tests that are smart enough to examine all the source code branches that have already

been discovered that lead to path explosion and test fails.

Those SUTs will be automatically generated without human interference, this is
very handy to the developers and saves a lot of time to discover many software bugs that

many developers do not think about.

According to the Example 1 the following unit tests will be generated as follows:

[Test]
public void TestCasel()
{

// Arrange

mt a;

mtb=0;

mt c =0;

I/l Act & Assert

Assert. Throws<DivideByZeroException>(() =>

{
a=b+4/c;

o
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[ Test]
public void TestCase2()
{
// Arrange
it a;
mtb=0;
mtc=2;
/l Act
a=b+4/c;
/I Assert
Assert. Equal(2, a);

As seen from the above unit tests, the first unit test is the one that predicts the bug
especially when ¢ = 0, while the other ensures the correctness of the tested code, and

doing what is supposed to do. Figure 4.7 illustrates the entire process of results generation.
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Figure (4.7) Flowchart Diagram for Result Generation
4.3 Program Analysis and Execution

The program analysis 1s the process of automatically analyzing the behavior of
computer programs regarding a property such as correctness, robustness, safety and
liveness. Program analysis focuses on two major areas: program optimization and
program correctness. The first focuses on improving the program’s performance while
reducing the resource usage while the latter focuses on ensuring that the program does

what it 1s supposed to do.

4.3.1 Static Analysis is the analysis of computer software that is performed without

actually executing programs (Wichmann et al., 1995).
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4.3.2 Dynamic Analysis is the analysis of computer software that is performed by

executing programs on a real or virtual processor (Myers et al., 2011).
4.3.3 Satisfiability Modulo Theories (SMT)

In computer science and mathematical logic, the SMT problem is a decision
problem for logical formulas with respect to combinations of background theories
expressed in classical first-order logic with equality. In computer science, the theory of
integers, real numbers and various data structures (array, lists, and bit vectors) are

examples of such theories (Barrett et al., 2009).

First Order Theories

Restrictions on first order logic and the interpretation of formulas, theories allow
us to capture structures which are used by programs (e.g., arrays, integers, etc.) and enable

reasoning about them (First Order Logic, 1995).

The formulas in the first order logic theory are constructed with a specific set of

function, predicate and constant symbols, this signature called X.

A first order formula in the theory is then built from elements of X together with

variables, logical connectives such as A, V, —, — and quantifiers v, 3

An SMT instance is a formula in first-order logic, where some function and
predicate symbols have additional interpretations, and SMT is the problem of determining
whether such a formula is satisfiable. In other words, imagine an instance of the boolean
satisfiability problem in which some of the binary variables are replaced by predicates
over a suitable set of non-binary variables. A predicate is a binary-valued function of non-
binary variables. The example predicates include linear inequalities (e.g., 3x + 2y -z <4)
or equalities involving uninterpreted terms and function symbols (e.g., f{f(u, v), v) = flu,
v) where f1s some unspecified function of two arguments). These predicates are classified
according to each respective theory assigned. For instance, linear inequalities over real

variables are evaluated using the rules of the theory of linear real arithmetic, whereas

rules of the theory of uninterpreted functions with equality aka empty theory. Other

theories include the theories of arrays and list structures (useful for modeling and
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verifying computer programs), and the theory of bit vectors (useful in modeling and

verifying hardware design) (Barrett et al., 2009).

SMT solvers are widely used in many analyses including synthesis (as in the
project), verification, program analysis and software testing based on symbolic execution

which will be discussed in later (Barrett et al., 2009).
4.3.4 Concrete Execution

Concrete execution refers to actually running the program on specific inputs and

seeing what happens.
4.3.5 Symbolic Execution

Symbolic execution is a means of analyzing a program to determine what inputs
cause each part of a program to execute. An interpreter follows the program, assuming
symbolic values for inputs rather than obtaming actual inputs as normal execution of the
program would. It thus arrives at expressions in terms of those symbols for expressions
and variables in the program, and constraints in terms of those symbols for the possible

outcomes of each conditional branch (King, 1976).

52



Consider the program below, which reads in a value and fails if the input 1s 6.

void Test(int a)

{
b=2%*a;

If b==12)
{

throw new Exception();

}

else

{
Console.WriteLine(“OK”);

In normal execution aka concrete execution, the program would accept a concrete
mput value (e.g., 5) and assign it to a. Execution would then proceed with the

multiplication and the conditional branch, which would evaluate to false and print OK.

In symbolic execution, the program will assign a symbolic value (e.g., 4) to a. The
program would then proceed with the multiplication and assign 4 * 2 to 5. When reaching
the if statement, it would evaluate 4 * 2 == ]2. At this point of the program, 4 could take
any value, and symbolic execution can therefore proceed along both branches, by forking
two paths. Each path gets assigned a copy of the program state at the branch instruction
as well as a path constraint. In this example, the path constraint is 4 * 2 == 12 for the then
branch and 4 * 2 /= 12 for the else branch. Both paths can be symbolically executed
independently. When paths terminate (e.g., as a result of throwing the exception or exit),
symbolic execution computes a concrete value for 4 by solving the accumulated path
constraints on each path. These concrete values can be thought of as concrete test cases

that can, e.g., help developers reproduce bugs. In this example, the constraint solver

would determine that in order to reach the exception statement, 4 would need to equal 6.
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At any point during program execution, symbolic execution keeps two formulas:
symbolic store and a path constraint. Therefore, at any point in time the symbolic state 1s

described as the conjunction of these two formulas (Vechev, n.d.).

a) Symbolic Store

The variables values at any time are given by a function o € SymbolStore = Var
Sym where, Var is the set of variables, Sym 1s a set of symbolic values and o;1s called a

symbolic store.

Let o5 - x — x0, ¥ — yo, then = = x + y will produce the symbolic store x — xg, y — y9, =

— x¢ + yothat we keep symbolic expression xo + yo

b) Path Constraint

The analysis keeps a path constraint which records the history of all branches
taken so far. The path constraint is simply a formula which is typically in decidable logical

fragments without quantifiers.

Letos: x — xo0,y — yo, pct =x0> 10, letus evaluate: if (x >y + 1) {5: ... }

At label 5, we will get symbolic store o5, which does not change, but we will get an

updated path constraint pct =xo> 10 A xo > yo+ 1

Limitations

There are some limitations for symbolic execution:

e Path explosion

Symbolically executing all feasible program paths does not scale to large
programs, because the number of feasible paths in a program grows exponentially
with an increase in program size and can even be infinite in the case of programs
with unbounded loop iterations (Anand et al., 2008). The solution for this problem
1s to use either heuristics for path finding to increase code coverage (Ma et al.,
2011), reduce execution time by parallelizing independent paths (Staats &
Pésdreanu, 2010), or by merging similar paths (Kuznetsov et al., 2012).
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4.3.6

Program-dependent efficiency

Symbolic execution is used to reason about a program path by path which is an
advantage over reasoning about a program input by input as other testing
paradigms use (e.g. Dynamic program analysis). However, if few inputs take the
same path through the program, there is little savings over testing each of the

inputs separately.

Memory aliasing

Symbolic execution is harder when the same memory location can be accessed
through different names (aliasing). Aliasing cannot always be recognized
statically, so the symbolic execution engine cannot recognize that a change to the

value of one variable also changes the other (DeMillo & Offutt, 1991).

Arrays

Since an array is a collection of many distinct values, symbolic executors must
either treat the entire array as one value or treat each array element as a separate
location. The problem with treating each array element separately is that a
reference such as "A[7]" can only be specified dynamically, when the value for i

has a concrete value (DeMillo & Offutt, 1991).

Environment interactions

Programs interact with their environment by performing system calls, receiving
signals, etc. Consistency problems may arise when execution reaches components

that are not under control of the symbolic execution tool (e.g., kernel or libraries).

Concolic Execution

Concolic execution is a mix between Concrete execution and symboelic execution

with the purpose of feasibility. Concolic execution is a hybrid software verification

technique that performs symbolic execution, a classical technique that treats program

variables as symbolic variabies, along a concrete execution (testing on particular imputs)

path. Symbolic execution is used in conjunction with an automated theorem prover (ATP)

or constraint solver based on constraint log programming to generate new concrete inputs
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(test cases) with the aim of maximizing code coverage. Its main focus is finding bugs in
real-world software, rather than demonstrating program correctness (“Concolic Testing,”

tid).

The concolic approach is also applicable to model checking. In a concolic model
checker, the model checker traverses states of the model representing the software being
checked, while storing both a concrete state and a symbolic state. The symbolic state is
used for checking properties on the software, while the concrete state is used to avoid

reaching unreachable states.

Consider the following simple example, written in C#:

void Test(int x, int y)

{
mtz=2*y;

if (x ==100000) {
if (x<z) {

throw new Exception();

Simple random testing, trying random values of x and y, would require an

impractically large number of tests to reproduce the failure.

This can begin with an arbitrary choice for x and y, for example x =y = /. In the
concrete execution, line 2 sets = to 2, and the test in line 3 fails since 7 # 700000.
Concurrently, the symbolic execution follows the same path but treats x and y as symbolic
variables. It sets = to the expression 2y and notes that, because the test in line 3 failed, x #
100000. This inequality is called a path condition and must be true for all executions

following the same execution path as the current one.
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Figure (4.8) Simple example using Concolic Execution (“Concolic Testing,” n.d.)

Figure 4.8 illustrates the program needs to follow a different execution path on
the next run, so the last path taken, condition encountered, x # /00000, and negate it,
giving x = 100000. An ATP 1s then invoked to find values for the input variables x and y
given the complete set of symbolic variable values and path conditions constructed during
symbolic execution. In this case, a valid response from the theorem prover might be x =

100000,y = 0.

Running the program on this input allows it to reach the inner branch on line 4,
which 1s not taken since 100000 (x) 1s not less than 0 (z = 2y). The path conditions are x
= 100000 and x > =. The latter is negated, giving x < z. The theorem prover then looks
for x, y satisfying x = 100000, x < = A =z = 2y for example, x = 100000, y = 50001. This

input reaches the exception.
A. Limitations
Concolic testing has a number of limitations:

o If the program exhibits non deterministic behavior, it may follow a different path
than the intended one. This can lead to non-termination of the search and poor
coverage.

e Even in a deterministic program, a number of factors may lead to poor coverage,
including imprecise symbolic representations, incomplete theorem proving, and

failure to search the most fruitful portion of a large or infinite path tree.
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e Programs which thoroughly mix the state of their variables, such as cryptographic

primitives, generate very large symbolic representations that cannot be solved in

practice. For example, the condition if(sha256 hash(input) == 0x12345678) { ...

} requires the theorem prover to invert SHA256, which is an open problem.

B. Tools

Table 4.2 shows some of the tools that are using the concolic execution in

different languages and frameworks.

Table (4.2) Concolic Execution Tools (“Concolic Testing,” n.d.)

Name Target Url Source

JCUTE Java https://github.com/osl/jcute Open

CREST B http://www.burn.im/crest/ Open

KLEE LLVM https://klee.github.io/ Open

CATG Java https://github.com/ksen007/janala2 Open

Jalangi JavaScript https://github.com/SRA- Open

SiliconValley/jalangi

PEX NET http://research.microsoft.com/en- Close
Framework us/projects/pex/

Triton x86 and x86- http://triton.quarkslab.com Open
64

CutEr Erlang https://github.com/aggelgian/cuter/ Open

PathCrawler http://pathcrawler-online.com/ Close

44 Summary

This chapter summarizes the overall design of the proposal technique which uses AST

for software bugs prediction. It explains in detail all the phases of the proposed technique

from model construction of the AST, path exploration and finally result generation which

will generate a bunch of SUTs that are enough to cover all the corner cases for the MUT.
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CHAPTER 5: IMPLEMENTATION



5.1 Introduction

This chapter discusses the implementation details of the proposed methodology
to conduct the objectives of this research. This includes both lexical and syntax analysis
to construct the AST model using Roslyn, then the SMT solver that is used in conjunction
with concolic execution to generate the test data. After that, it discusses the
implementation of the syntactic pattern matching — that described in Chapter 3 — which
will be used in the path exploration for a given AST. Finally it will illustrate some

examples that show how all the things fit together.

5.2 Model Construction

The construction of the AST model mainly needs a compiler-like tool, in terms

of the implementation Roslyn APIs have been used, instead of reinventing the wheel.

5.2.1 Roslyn

NET Compiler Platform, also known by its nickname Roslyn (Turner, 2014), is
a set of open-source compilers and code analysis APIs for C# and Visual Basic.NET
languages from Microsoft (“Roslyn (Compiler),” n.d.). The project notably includes self-
hosting versions of the C# and VB.NET compilers — compilers written in the languages
themselves. The compilers are available via the traditional command-line programs but
also as APIs available natively from within .NET code. Roslyn exposes modules for
syntactic (lexical) analysis of code, semantic analysis, dynamic compilation to Common
Intermediate Language (CIL), and code emission (Manish Vasani, 2017; McAllister,
2011).

5.2.2 Roslyn Core APIs

The Roslyn exposes C# and Visual Basic compiler’s code analysis to you as a
consumer by providing an API layer that mirrors a traditional compiler pipeline (Ng et

al., 2012).
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Compiler

Pipeline

Figure (5.1) Roslyn Compiler Pipeline (Ng et al., 2012)

Each phase of this pipeline is a separate component as shown in Figure 5.1. First
the parse phase, where source is tokenized and parsed into syntax that follows the
language grammar. Second the declaration phase, where declarations from source and
imported metadata are analyzed to form named symbols. Next the bind phase, where
identifiers in the code are matched to symbols. Finally, the emit phase, where all the

information built up by the compiler is emitted as an assembly.

Compiler API - Emit API

Compiler -
Pipeline

IL Emitter

Metadata
Import

Figure (5.2) Roslyn Compiler API (Ng et al., 2012)

Corresponding to each of those phases, an object model is surfaced that allows
access to the information at that phase as shown in Figure 5.2. The parsing phase is
exposed as a syntax tree, the declaration phase as a hierarchical symbol table, the binding
phase as a model that exposes the result of the compiler’s semantic analysis and the emit

phase as an API that produces Intermediate Language (IL) byte codes.
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Figure (5.3) Roslyn Language Service (Ng et al., 2012)

Each compiler combines these components together as a single end-to-end

whole.

To ensure that the public Compiler APIs are sufficient for building world-class
Integrated Development Environment (IDE) features, the Roslyn language services which
illustrated in Figure 5.3 are built using them. For instance, the code outlining and
formatting features use the syntax trees, the Object Browser and navigation features use
the symbol table, refactoring and Go to Definition use the semantic model, and Edit and

Continue uses all of these, including the Emit APL

A. Compiler APIs

The compiler layer contains the object models that correspond with information
exposed at each phase of the compiler pipeline, both syntactic and semantic. The compiler
layer also contains a representation of a single invocation of a compiler, including

assembly references, compiler options, and source code files.
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B. Scripting APIs

As a part of the compiler layer, a set of the scripting APIs are exposed that
represents a runtime execution context for C# or Visual Basic snippets of code. It
contains a scripting engine that allows evaluation of expressions and statements as top-

level constructs in programs.

5.2.3 Working with Syntax

The most fundamental data structure exposed by the Compiler APIs is the syntax
tree. These trees represent the lexical and syntactic structure of source code. This section

will discuss the key concepts regarding the Syntax APL

A. Syntax Trees

Syntax trees are the primary structure used for compilation, code analysis,
binding, refactoring, IDE features, and code generation. No part of the source code is
understood without being first identified and categorized into one of many well-known

structural language elements.

Syntax trees have three key attributes. The first attribute is that syntax trees hold
all the source information in full fidelity. This means that the syntax tree contains every
piece of information found in the source text, every grammatical construct, every lexical
token, and everything else in between including whitespace, comments, and preprocessor
directives. For example, each literal mentioned in the source is represented exactly as it
was typed. The syntax trees also represent errors in source code when the program is

incomplete or malformed, by representing skipped or missing tokens in the syntax tree.

This enables the second attribute of syntax trees. A syntax tree obtained from the
parser is completely round-trippable back to the text it was parsed from. From any syntax
node, it 1s possible to get the text representation of the sub-tree rooted at that node. This
means that syntax trees can be used as a way to construct and edit source text. By creating
a tree you have created the equivalent text, by implication and by editing a syntax tree,

making a new tree out of changes to an existing tree, you have effectively edited the text.
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The third attribute of syntax trees is that they are immutable and thread-safe. This
means that after a tree is obtained, it is a snapshot of the current state of the code, and
never changes. This allows multiple users to interact with the same syntax tree at the same
time 1in different threads without locking or duplication. Because the trees are immutable
and no modifications can be made directly to a tree, factory methods help create and
modify syntax trees by creating additional snapshots of the tree. The trees are efficient in
the way they reuse underlying nodes, so the new version can be rebuilt fast and with little

extra memory.

A syntax tree is literally a tree data structure, where non-terminal structural

elements parent other elements. Each syntax tree is made up of nodes, tokens, and trivia.
B. Syntax Nodes

Syntax nodes are one of the primary elements of syntax trees. These nodes
represent syntactic constructs such as declarations, statements, clauses, and expressions.
Each category of syntax nodes is represented by a separate class derived from

SyntaxNode.

All syntax nodes are non-terminal nodes in the syntax tree, which means they
always have other nodes and tokens as children. As a child of another node, each node
has a parent node that can be accessed through the Parent property. Because nodes and
trees are immutable, the parent of a node never changes. The root of the tree has a null

parent.

Each node has a ChildNodes method, which returns a list of child nodes in
sequential order based on its position in the source text. This list does not contain tokens.
Each node also has a collection of Descendant* methods - such as DescendantNodes,
DescendantTokens, or DescendantTrivia - that represent a list of all the nodes, tokens, or

trivia that exist in the sub-tree rooted by that node.

In addition, each syntax node subclass exposes all the same children through

strongly typed properties. For example, a BinaryExpressionSyntax node class has three
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type of Left and Right i1s ExpressionSyntax, and the type of OperatorToken 1is
SyntaxToken.
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Some syntax nodes have optional children. For example, an IfStatementSyntax has

an optional ElseClauseSyntax. If the child is not present, the property returns null.

. Syntax Tokens

Syntax tokens are the terminals of the language grammar, representing the
smallest syntactic fragments of the code. They are never parents of other nodes or tokens.

Syntax tokens consist of keywords, identifiers, literals, and punctuation.

For example, an mteger literal token represents a numeric value. In addition to the
raw source text the token spans, the literal token has a Value property that tells you the
exact decoded integer value. This property is typed as Object because it may be one of

many primitive types.

The ValueText property tells you the same information as the Value property;
however this property is always typed as String. An identifier in C# source text may
include Unicode escape characters, yet the syntax of the escape sequence itself is not
considered part of the identifier name. So although the raw text spanned by the token does
include the escape sequence, the ValueText property does not. Instead, it includes the

Unicode characters identified by the escape.

D. Syntax Trivia

Syntax trivia represents the parts of the source text that are largely insignificant
for normal understanding of the code, such as whitespace, comments, and preprocessor

directives.

Because trivia is not part of the normal language syntax and can appear anywhere
between any two tokens, they are not included in the syntax tree as a child of a node. Yet,
because they are important when implementing a feature like refactoring and to maintain

full fidelity with the source text, they do exist as part of the syntax tree.

Trivia can be accessed by inspecting a token’s LeadingTrivia or TrailingTrivia
collections. When source text is parsed, sequences of trivia are associated with tokens. In
general, a token owns any trivia after it on the same line up to the next token. Any trivia

after that, line is associated with the following token. The first token in the source file
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gets all the initial trivia, and the last sequence of trivia in the file is tacked onto the end-

of-file token, which otherwise has zero width.

Unlike syntax nodes and tokens, syntax trivia do not have parents. Yet, because
they are part of the tree and each 1s associated with a single token, you may access the

token associated with using the Token property.

E. Spans

Each node, token, or trivia knows its position within the source text and the
number of characters it consists of. A text position is represented as a 32-bit integer, which
1s a zero-based Unicode character index. A TextSpan object 1s the beginning position and
a count of characters, both represented as integers. If TextSpan has a zero length, it refers

to a location between two characters.

F. Kinds

Each node, token, or trivia has a Kind property, of type SyntaxKind, that identifies

the exact syntax element represented.

The Kind property allows easy disambiguation of syntax node types that share the
same node class. For tokens and trivia, this property is the only way to distinguish one

type of element from another.

For example, a single BinaryExpressionSyntax class has Left, OperatorToken, and
Right as children. The Kind property distinguishes whether it is an AddExpression,
SubtractExpression, or MultiplyExpression kind of syntax node.

G. Errors

When the parser encounters code that does not conform to the defined syntax of

the language, it uses one of two techniques to create a syntax tree.

First, if the parser expects a particular kind of token, but does not find it, it may
insert a missing token into the syntax tree in the location that the token was expected. A
missing token represents the actual token that was expected, but it has an empty span, and

its IsMissing property returns true.
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Second, the parser may skip tokens until it finds one where it can continue parsing.
In this case, the skipped tokens that were skipped are attached as a trivia node with the
kind SkippedTokens.

Until now everything related to the Roslyn syntax trees has been covered. Let us

have a look at example 1 to see Roslyn tree in action:

Example 1:

Class SimpleClass

{
public void SimpleMethod()
{
}

Using Roslyn’s syntax visualizer, which can be add-in to Visual Studio.NET as

extension, the class syntax tree for example 1 will be shown as follow:

SimpleClass - MethodDeclaration
PredefinedType SimpleMethod
- o

Figure (5.4) Sample Roslyn Syntax Tree (Varty, 2014)

As shown in Figure 5.4 the syntax nodes are the blue one, while the syntax tokens are
the green one. Syntax Nodes are ClassDeclaration, MethodDeclaration, ParamteterList

and Block. Syntax tokens are class, SimpleClass, Punctuation, void and SimpleMethod.
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5.2.4 Working with Semantic

Syntax trees represent the lexical and syntactic structure of source code. Although
this information alone is enough to describe all the declarations and logic in the source, it

1s not enough information to identify what 1s being referenced.

For example, many types, fields, methods, and local variables with the same name
may be spread throughout the source. Although each of these is uniquely different,
determining which one an identifier actually refers to often requires a deep understanding

of the language rules.

A. Compilation

A compilation is a process that represents everything needed to compile a C# or
Visual Basic program including all assembly references, compiler options and source

files.

The compilation represents each declared type, member or variable as a symbol
and contains a variety of methods that help you find and relate symbols that have either

been declared in the source code or imported from another assembly.

B. Symbols

A symbol represents a distinct element declared by the source code or imported

from an assembly as metadata.

As mentioned in the previous section a variety of methods and properties on the
Compilation type help you find symbols. For example, you can find a symbol for a

declared type by its common metadata name.

Symbols present a common representation of namespaces, types, and members,
between source code and metadata. For example, a method that was declared in source
code and a method that was imported from metadata are both represented by a

MethodSymbol with the same properties.
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C. Semantic Model

A semantic model represents all the semantic information for a single source file. It

1s useful for discovering the following:

e The symbols referenced at a specific location in source.
e The resultant type of any expression.

e All diagnostics, which are errors and warnings.

e How variables flow in and out of regions of source.

e The answers to more speculative questions.

5.3 Test Data Generation

As discussed earlier in Chapter 4, one of the challenges of creating a SUTs is
generating a test data for MUT, these input data are critical to any generated unit test

because it leads to a path explosion.
5.3.1 Test Data Generation Algorithm

Test data generation algorithm is responsible for generating the test data, which is used
as an input for the MUT. This can be done Algorithm 5.1, which shows all the steps

required for generating the test data as the following:

1. Loops through all the MUT parameters.

2. Loops through all the pattern matching visitors, which will be described in the
5.3.3 section.

3. Apply each pattern matching algorithm for the previous parameters, in case to
generate the suitable inputs that triggers an exception — if any — in the tested

method.

69



Algorithm 5.1: Test Data Generation

ForV p € My
Forv m € PM
Compute m(p)
End For
End For

Where M,y 1s a method parameters list, PM are pattern matches and m(x) i1s a pattern

matching algorithm, where x is the parameter in which assists to generate the test data.

5.3.2 Path Exploration Algorithm

Another challenge that was already discussed in the previous chapter is path
exploration, a SUTs should examine all the paths in the AST if it is possible, for a given

method. This will increase the code coverage for a particular method.

Interestingly it might be that some paths in AST are safe (bug free), eliminating
such paths will gain some performance for the proposed algorithm. This could be done

by filtering the entire AST with the patterns that are implemented to catch the bugs.

The path exploration algorithm is responsible for traversing all the feasible AST paths for
the MUT. This can be done by Algorithm 5.2, which shows all the steps required for

exploring the paths as the following:

1. Loops through all the feasible paths for the MUT.

2. Loops through all the pattern matching visitors.

3. Checks if the particular path not contains any pattern matching, then go to step 2,
otherwise

4. Apply the matching algorithm for the given execution path, with the generated

mnputs.
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Algorithm 5.2: Path Exploration

ForvpeM,
Forv m € PM
If =m(p) Then
‘ No action is needed, when there is no match is found for a given path
Continue For
End If
Compute m(Sp, g(M))
End For
End For

Where M, are method paths, PM are pattern matches, Sp is a statement for a certain
execution path, m(x, y) 1s pattern matching algorithm, where x is the statement to be
computed against the pattern matcher, y is the input data to be applied for x and g(x) is a

generated test data function, which is shown in Algorithm 5.1.
5.3.3 Pattern Matches

There are some pattern matches that have been used to detect the most common static

bugs as the following:
A. Null Reference Visitor Pattern

This pattern scans the entire AST and looks for a declared variables that are not

assigned to any values, especially variables who have reference types or null able types.

string name;

nt? amount;

Both of the above variables may cause NullReferenceException if they are assigned

somewhere else before they assigned to any values.
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B. Divide By Zero Visitor Pattern

This pattern match algorithm scans the entire AST and looks for a division operator */°,
which exists into two types of expressions: DivideExpression and

DivideAssignmentExpression.

a=b/c;
a/=b;

Both of the above expressions may cause DivideByZeroException if the divisor is equal

to zero.

. Array Out of Bound Visitor Pattern

This pattern match algorithm scans the entire AST and looks for an array element

accessor, and checks whether the array index is out of range or not.

a1] =7;
c=b[2];

Both of the above expression may cause IndexOutOfRangeException if the array index is

less or greater than the array size.
D. Overflow Visitor Pattern

This pattern matches an algorithm scans the entire AST and looks for a mathematical

assignment expression that may exceed the range of the variable types.

mta=>b+c;

The above expressions may cause OverflowException if the value of both b and ¢ exceed

the limit of the integer size.
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D. Z3 Theorem Prover

Z3 Theorem prover is an open source cross-platform SMT solver - hosted on
GitHub (Z3, n.d.) - that was developed by Microsoft in the Research in Software
Engineering group at Microsoft Research (Using the SMT Solver Z3, n.d.).

It aims to solve problems that arise in software verification and software analysis.
Z3 supports arithmetic, fixed-size bit-vectors, extensional arrays, data types,
uninterpreted functions, and quantifiers. Its main applications are extended static

checking, test case generation, and predicate abstraction (“Z3 Theorem Prover,” n.d.).

73 has bindings for various programming languages including C, C++, Java,
Haskell, OCamel, Python and .NET.

Now let us illustrate two examples to show how Z3 can be used in both (propositions

and predicate logic) and solving equations.

Example 2:

In this example propositional logic assertions are checked using functions to
represent the propositions @ and b. The following Z3 script checks to see whether the —

(@Al =(alV=h)

(declare-fun a () Bool)

(declare-fun b () Bool)

(assert (= (not(and a b)) (or (not a)(not b))))

(check-sat)

Result:

Sat
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Example 3:

In this example two equations are given, Z3 finding suitable values for the

variables a and b:

(declare-const a Int)
(declare-const b Int)
(assert (= (+a b) 20))
(assert (=(+a (*2Db)) 10))
(check-sat)

(get-model)

Result:

sat
(model
(define-fun b () Int
-10)
(define-fun a () Int
30)

5.4 Result Generation

Generating the SUTs is the last phase that needs to be implemented, this simply generates
all the reported bugs from the previous phase and writes them in the form of unit tests.
There are many unit testing frameworks out there, some are already mentioned in Chapter

2
5.4.1 Result Generation Algorithm

The result generation algorithm 1s responsible for generating the required for the MUT
aka SUTs. This can be done by Algorithm 5.3, which shows all the steps required for

generating the result are as follows:

1. Loops through all predicted bugs for the MUT.
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2. Generate a unit test for a given bug, with the selected inputs.

Algorithm 5.3: Result Generation

Forv b € My

Print f{g(D))
End For

Where My, 1s a predicted bug, f(g(b)) = f° g which is a function to generate a unit test for
a particular bug in the tested method, by providing the test data that makes the method

throws an exception.
5.4.2 Visual Studio Unit Testing Framework

The Visual Studio Unit Testing Framework describes Microsoft’s suite of unit testing
tools as integrated into some of Visual Studio 2005 and later. The unit testing framework
1s defined in Microsoft. VisualStudio.QualityTools. UnitTestFramework.dll. Unit tests
created with the unit testing framework can be executed in Visual Studio or, using

MSTest.exe, from a command line (Get Started with Unit Testing, 2020).

There are some elements used by MSTest tool such as TestClassAttribute,
TestMethodAttribute. The following example shows how a unit test can be written by

using MSTest:
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using Microsoft. VisualStudio.TestTools.UnitTesting;
[TestClass]
public class TestClass
{
[TestMethod]
Public void AddTwoNumbersTest()
{
// Arrange
mta=3;
mt b= 4;
I/l Act
int ¢ = Add(a, b);
/I Assert
Assert.Equals(7, c);

The above unit test examines that the result of the method Add(a, b) in the given context

returns 7, wherea=3, b=4.
5.5 Experimental Results

The research did some experiments, to measure the efficiency of the proposed approach

with some criteria: the discovered bug types and accuracy factors.

After executing the prototype for the proposed approach, in multiple runs the results
show that the prototype is able to discover all known static bugs that were mentioned
previously. Also the number of generated unit tests are based on the possible cases for
the test data of the MUT, which increases the accuracy for the proposed method on

predicting the bugs.
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Let us consider the following method to be tested:

public int Method(int a, int b)
{

mtc=>b+2;

mtd=a/c;

return d;

As shown from the previous code snippet, the code will throw an exception if ¢ = 0, this
will occurs when b = -2, so the prototype will generate two SUTs that will examine all

the possible execution paths for the above method as follows:

public void TestMethod1()
{
// Arrange
it a = 30;
mtb=-2;
/I Act & Assert
Assert. Throws<DivideByZeroException>(() => Method(a, b));

The previous unit test 1s the only one, which makes the given MUT fail, and the next

unit test is just to ensure that the given method works as expected.
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public void TestMethod2()
{
// Arrange
mta=10;
mtb=2;
// Act
int ¢ Method(a, b);
/I Assert

// Assert. Equals(5, c);
}

This concludes that the proposed method is able to predict all of the static bugs, also its
accurate in terms of the generated only the minimal required unit tests which cover all

the execution paths for a given method.

5.6 Comparison of Result with Previous Works

Based on the reviews and some of the preliminary experiments results, it shows
that using static analysis with AST improves the time required for generating the test data
which are used as input for the MUT. Also it increases the code coverage, so all the paths

for the MUT will be traversed to cover all the possibilities during the program exploration.

To measure some result is suggested the closest tool that can be used for the
upcoming comparison. After a lot of research RANDOOP for .NET was the most suited
tool to compare with (Industrial Software Systems at ABB Corporate Research, n.d.).

Tables 5.1 and 5.2 shows some experimental results that were made against
RANDOQOP for .NET which 1s using FDRT technique - that is discussed in Chapter 3 -

using bug type and accuracy factors.
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Table (5.1) Comparing RANDOOP for NET with Smart Unit Tests by Bug Type Factor

Bug Type RANDOOP for NET Smart Unit Tests
Null Reference No Yes
Divide By Zero Yes Yes
Overflow No Yes
Array Out of Bound Yes Yes

Table 5.1 shows the ability to discover all of the common static bugs. In addition Table

5.2 shows the comparison between the two approaches with accuracy as a factor.

In order to run this comparison, a time parameter needs to be configured in RANDOOP

for NET, so the underneath comparison shows different values for the time parameter.

Table (5.2) Comparing RANDOOP for NET with Smart Unit Tests by Accuracy Factor

Bug Type RANDOOP for NET Smart Unit Tests
1 sec 10 sec

Null Reference 0 0 0 0 1

Divide By Zero 11 4 89 30 1

Overflow 0 0 0 0 1

Array Out of Bound 2 3 13 49 1

The results that are highlighted above indicate that these unit tests are not necessary at
all, of course this will consume the time required to generate all the unit tests. Moreover
the number of generated unit tests compared with SUTSs are too much, that is why it is

named smart.

The Figures 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12 and 5.13 show more analytical data
about the comparison about both techniques, also it shows how the generated tests by

using RANDOORP for .NET increased dramatically over the time.
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Comparison by Predicted Bugs Types
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Figure (5.5) Comparison between RANDOOP for NET and Smart Unit Tests by Predicted Bugs Types
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Figure (5.6) Comparison between RANDOOP for .NET and Smart Unit Tests by Predicted Bugs Types
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Comparison by No. of Required Unit Tests
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Figure (5.7) Comparison between RANDOOP for .NET and Smart Unit Tests by Predicted Bugs Types

Comparison by No. of Generated Unit Tests

16
14
12
10

8

6

4

2

i 7 > .

Null Reference Divide By Zero Overflow Array Out of Bound
=@==RANDOOP for .NET (1 sec) ==@==Smart Unit Tests

Figure (5.8) Comparison between RANDOOP for NET and Smart Unit Tests by No. of Generated Unit
Tests (1 sec)
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Comparison by No. of Used Unit Tests
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Figure (5.9) Comparison between RANDOOP for .NET and Smart Unit Tests by No. of Used Unit Tests
(1 sec)
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Figure (5.10) Comparison between RANDOOP for .NET and Smart Unit Tests by No. of Unused Unit
Tests (1 sec)

82



Comparison by No. of Generated Unit Tests
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Figure (5.11) Comparison between RANDOOP for .NET and Smart Unit Tests by No. of Generated Unit
Tests (10 sec)
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Figure (5.12) Comparison between RANDOOP for NET and Smart Unit Tests by No. of Used Unit Tests
(10 sec)
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Figure (5.13) Comparison between RANDOOP for .NET and Smart Unit Tests by No. of Unused Unit
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Testing the Results

To test the experimental results that discussed previously for RANDOOP.NET,

there are some steps need to be done as the following:

e W0

Go to the GitHub website, more specifically to the RANDOOP.NET
repository https://github.com/abb-iss/Randoop.NET.

Clone the above repository in your machine.

Open the cloned repository via Visual Studio.NET 2008 or above.

Build the RANDOOP.NET solution.

Open the command line CMD, and point into the path
Randoop.NET\randoop-NET-src'\Randoop'\bin\Release

Run the command randoop.exe /timelimit:[t] [p], where ¢ is the time that
1s required to run the tests for (in seconds) and p is the assembly path to

be tested.

To run the same tests agamst the suggested approach, please refer to the appendices

section.
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5.8 Results Discussion

Based on the preliminary results that are made, comparing with FDRT technique
it shows that the proposed technique is promising. Also it proves that using the AST
model 1s suited for maximizing the test code coverage, while it implies predicting various

types of the static bugs using static program analysis technique.

Furthermore, during the experiments that made it is clearly seen that the
RANDOOP implementation for .NET generated many unit tests, which are valid, but not
necessary, this is because of the technique that had been chosen for the test data
generation. In contrast, the proposed approach generated a SUTs that 1s enough to test all
the possible paths for the MUT. That means the proposed approach will generate the
suitable cases as fast as possible, no time consumed for unnecessary unit tests even if they

are valid.

5.9 Summary

NET Compiler Platform (Roslyn) is a powerful tool that helps to construct the
AST for all methods that need to be tested instead of reinventing the wheel and creating
a new tool from scratch. This helps to implement a proof of concept on top of Roslyn, to
create a tree-based model, then use both a concolic execution with Z3 theorem prover to
obtain the test data, alongside with the syntactic pattern matching the implementation to

explore the AST paths that not only feasible, but accurate for a particular method.
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CHAPTER 6: CONCLUSION & FUTURE WORK



6.1 Conclusion

This thesis contributes to the literature from empirical, theoretical and practical
points of view. Empirically, it provides understanding of the importance of unit testing to
software developers and QA, and how SUTs are used i their work and help them to

accomplish their tasks in a good manner by generating unpredictable suites of unit tests.

From a theoretical point of view, the findings of this research support several
theoretical perspectives that have been introduced in relation with the QA in Software

Testing & Software Quality.

Practically, this research provides a proof of concept to the developing approach
that has been proposed. So, the implemented prototype is not mature enough to be used

in production, but hopefully this will be addressed in the upcoming future.

6.2 Limitations of Research Approach

SUTs that are proposed in this thesis have addressed the challenges that had been
considered in the existing approaches for test automation and bug finding. The
experiments are done for different syntactic pattern matching that are discussed in

Chapter 5.

In this section, few issues are briefly discussed, and general research directions are

provided to address them as follows:

- Predict the software static bugs, so bugs such as: memory leaks, performance
1ssues and exceptions that rely on the software environment cannot be predicted, because

this by nature is a static program analysis limitation.

- Predict the software bugs that may occur in the procedural programming

languages, excluding the nested conditions and loops.
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6.3 Future Work

Three avenues of future research are identified in light of findings of this research

and limitations discussed in Section 6.2.

First, future research could be able to include a wide range of statements,
including control flow and loop statements. Also supports object oriented languages

afterward.

Second, future research could support adding time factors to measure the

performance for the proposed technique.

Lastly, future research could improve a tool that could be integrated with various

unit testing adapters within Visual Studio IDE such as MS Test, xUnit.
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