

Republic of Yemen (|

Ministry of Higher Education
& Scientific Research

Al-Rayan University 'v

ol - Jld e ol o
Faculty of Higher Studies AL-RAYAN UNIVERSITY

OPTIMIZING LARGE CLASS SMELL BY
APPLYING CLASS NORMALIZATION RULES

Thesis Submitted to Al-Rayan University to Fulfillment of the

Requirements for the Degree of Master in Information Technology

By

Marwan Ahmed Saeed Lardhi

Supervised by

Dr. Saeed Mohammed Baneamoon

21441 /22020

Approval of the Proofreader

| certify that the master's dissertation titled,
(Optimizing Large Class Smell by Applying Class Normalization Rules)
submitted by the student, Marwan Ahmed Saeed Lardhi

has been linguistically reviewed under my supervision and has become in scientific

style and clear from linguistic errors and for that I sign.

Proofreader : Abdullah Amer Al-kathiri
Academic Title : Assistant Professor

University : Ha out University

ST A /,...(/Q‘"

Date :

Approval of the Scientific Supervisor

I certify that this master's dissertation titled,

(Optimizing Large Class Smell by Applying Class Normalization Rules)
submitted by the student, Marwan Ahmed Saeed Lardhi

has been completed in all its stages under my supervision and so I nominate it for

discussion.

Supervisor : Dr. Sace d Baneamoon

Signature :

Dae: 29 7 £ 12020

The Discussion Committee Decision

Based on the decision of the President of the University No. (4) in the year 2020
regarding the nomination of the committee for discussing the master's thesis entitled
(Optimizing Large Class Smell by Applying Class Normalization Rules) for the
researcher Marwan Ahmed Saeed Lardhi. We. the head of the discussion committee
and its members. acknowledge that we have seen the aforementioned scientific thesis

and we have discussed the student in its contents and what related to it.

Chairman of the Committee

id Shafel

Associate Professor Dr. Khah

Signature: ...

Committee member Committee member
Associate Professor Assistant Professor
Dr. Saced Mohammed Bancamoon Dr. Mohammed Abdullah Bamatraf

Signature:.......\

IR PSPy

/
> > 8

J:DJBz.dU‘) Z\:d.':'_) _3;'_;33 3’ Y\) LAJLQ) \—\}Lﬂ J.J\ ﬁ-b\&(—-\hﬁ}b

;.‘.,J ;J")\Jg L‘-’\Q}Jﬂ-’} ”YJ.\H}Q,’;&;’, g -JTLS_?E.:.@.

[V 005y 0]

Dedication

1 dedicate this work to
My father ... My mother
and
My wife ... My daughters

who made this accomplishment possible.

Acknowledgement
First, I present all thanks to Allah for all thing and absolute helpness.
Second, I would like to thank my supervisor Dr. Saeed Mohammed Baneamoon who has
provided me with support and guidance in this thesis.
And last but not least, I would like to give thanks and the love to my family who has

supported me always towards my goals and ambitions.

Abstract

Software needs to be updated and modified after delivery to correct faults and
enhance system quality. Classes of system undergoes continues modifications and
making that source code complex and difficult to maintain. As a result, the class
becomes large and called in this case large class smell. This study proposes an effective
method for optimizing extraction large class smell using class normalization rules in
order to ease maintenance and improve the quality of software by creating new classes
with strongly and similarity attributes and shared behavior. The proposed method
introduced a technique to extract a class with many responsibilities and that 1s chosen
by the developer or automatically, where is produced an access-set table of attributes,
and then 1s calculated the Jaccard similarity measure to create a similarity matrix for
attributes. After that 1s designed the structural similarity matrix of each extracted class,
to calculate the cohesion of each class. Experimental results show that applying the
proposed method for dividing the large class into many cohesive classes provide better

performance in software development compared with existing methods.

uaslall

i Gaenty elbal) maaail alidll sy Jally Gyl) cilmapl) 2 s

Guiays 3aae dtadl 5850 Jaady spdivall CLAN LA Gl il Gun L alail)
Ayl o34 2y L5y 25 Ala) o b Lede (3lhays 508 A8 i ¢ Sl dai Lguilua
sl Jaeas Jal (o0 caall gadai ae g aladinly 50Kl 2l 2 hadiud cuail Alled 43yl
Caed L Syika Slglisg 4y 8 4L law I3 3aa Gl LB PA e zalipl) 3a5a Gl
oshal d8 (e ylas) Sy A Gllgia) (e =l L 458 7 hadul 406 da i) 43,k
DS 4l (alie Glus 4 8 Gag ¢ Jgeasl) Gilow Jos U s Gan ¢ Ll
2 IS0 IS gLl daghan aranal 2 Sl dey . (<hriall) cland] 45 8 ghiae o LisY
25al) il A fidal) Agylall Gl o A pal) Al jels A% IS clula Gluad da A
Ghll jlie laayd) ok & Jumdl ol iy ASulaiall i) e aell) 5500

CAallsdl

-

Table of Contents

Dedicationvvvviiiiiiiiiiiiiiiiiiiiiiiii i s s aa
ACKNOWICAFEIICIL o uisusissinsvissinivisansnmsisisenisssmemmsssemmsines smsassss s
ADBSIFACE icvsmnanwmsimmiasisisim i i s s s s s e
Absiract (in Arabic IINgUage).....cioaisiniamssssinmesisiss i
Table of Contents ..o siassimsinihaiinimiuiididisinsse s
List of Tables «..uvvnnriiiiiiiiiiiiiiiiiiiiii i s s s e e
EARE OF BIBRITER o coomimmm aninmomismmon s womuonasmomin: oiamsissmon:somsinsi s s o s msis s o ssiouse SAs Mo KASS
List of Abbrevialons .::couannnnmnunsiiaiiaidnaiinanaassase
CHAPTER I: Intiroduction :...:..vosocsmminasvivinsieissmisismsiinnaissass
1.1 EINEIVIEW . ron ettt sn e i e d o e
1.2 IMOIVATION ..ot
1.3 Problem Statement
1.4 5 1[5 L RO
{ StopEand. Faiiahiins .o ot meinisbenmneibrasndnsmmmsionne
1.6 Resehicli APPIOatH .o vovvnsnnsssusnssasmrasessnssmnasscs
1.6.1 Problem Identification ...
1.6.2 Analysis of Current Techniques
1.6.3 Proposed Approach
1.6.4 Implementation
1.6.5 Optimizing Large Class Smell
1.6.6 TeStng ... e
LT BVl <o s i g s s s
1.7 ResearchiConmbilens .. cockerismiinmuuimmisnrissmamsses
1.8 SERCHHER L TS o e s s pass
CHAFPTER 2: BaKSroOI «.ciivciniisisiiiniiiiass isssissssssimssrives sans
2.1 R I e S S R R S S e
27 Software Engieeringo.ooooiiiiiii e
23 Software Maintenanceoooiiiiiiiiiie i
2.3.1 Software Reengineeringccoooiiiiiiiiiinann.
ZH4 BERER .kl s s e el amn i
25 Code Smells ...
2.6 LarpeClassccommssmemmmase s s mekbb snsb e s

N I R =) = T = N = N T U T U | R S U T T S R

o v v o

[—
[a—

13
16

2.7 Class Normalization

2.7.1 Class NormalizationRules

2.7.2 Class Normalization and Refactoring
2.8 L~ g L I SOPUIR -~ SO00 0 HYSO0 NSO VUL 3OS O SN SO0 - SO
29 VIEEETRRINT . oo s o S B S RO SR
CHAPTER 3: LRerature BevVIeW . oo ssensnssansinsumsnnsnsssnasassamnssannson
3.1 ORI coonemc it S T S s
332 Rilated Works.. o odebtees siniadonennennib s Srmba s aistad o
3.3 Critical Evaluation on Existing Approaches
34 BB o oot tmnnnn SR stade somabe Sonena b e e i
3.5 STEIRTRATY - oo i oot o S B R oS
CHAPTER 4: Design and Implementationcccceviiiiviiiinniiiinnienen
4.1 T RREA ocesesmimmersesmmssem s e B S e SR S
4.2 Thié Proposed Exiact Class APpioach ... ovovuvnmsmnnsny

42.1 Attribute Smmilarity Matrix ...l

4.2.2 Structural Similarity between Methods Matrix

4.2.3 Compute & Assessment Class Cohesion
43 Implemiehialion and Tesk ol APPraach «oonevrnammpunaasenss
44 Evaluation of The Proposed Extract Class Approach
4.5 Comparison of Results with Previous Works
4.6 STIIETRATY <. ciscasinisnsam oo <l s e e T e e A
CHAPTER 5: Conclusion and Future Workcccceviiiiiiiiiiciiiiiinennnn.
5.1 5 T, LRSS S L NOT SO OOV 3, SN NS W
52 Livmitation of The Proposed - Approach ..o s

53 Future Work

Rl CMCeS . s o s e i e s T e e s wiwvse e b

List of Publications

17
18
19
19
20

21
22
22
24
28
28

29
30
30
31
31
32
32
36
37
38

39
40
40
40
42

List of Tables

Table No.

2.1

3.1

4.1

42

43

44

4.5

4.6

Title

Code smell Types

Literature Review Summary
Attributes Access-set

Attributes Similarity Matrix (Jaccard)
SSM Similarity of Class C1

SSM Similarity of Class C2

SSM Similarity of Class C3

Comparison of Approaches

Page
14
25
34
34
34
35
35

37

List of Figures

Figure No.
1.1
2.1
22
23
24
25
2.6
27
2.8
4.1
42
43
44
45

4.6

Caption

Diagram of Research Approach

Software Life Cycle Cost

Extract Class

Extract Subclass

Extract Interface

OONF

10ONF

20NF

30NF

Process of Extract Class (Class Refactoring)
User Management Class

Proposed Extracted Classes

Extracted Class C1 (UserManagement)
Extracted Class C2 (TeachingManagement)

Extracted Class C2 (RoleManagement)

Page

10
16
17
17
18
18
18
19
31
33
34
%5
36

36

List of Abbreviations

Symbols
1ONF
20NF
30ONF
SDLC
IEEE
OO model
3

ESR
FRC
UML
RePOR
GA
ACO
SSM

ClassCoh

Nomenclatures

First Object Normal Form

Second Object Normal Form

Third Object Normal Form

Software Development Life Cycle

Institute of Electrical and Electronics Engineers
Object Oriented model

Conceptual Cohesion of Classes

Extract Subclass Refactoring

Functional over-Related Classes

Unified Model Language

Refactoring approach based on Partial Order Reduction
Genetic Algorithm

Ant Colony Optimization

Structural Similarity between Methods

Class Cohesion

CHAPTER 1: INTRODUCTION

1.1 Overview

Maintenance of software is a component of the life cycle of software development
that the primary aim is to modify and update software application after delivery to
correct faults and enhance system efficiency where it could be easy to modifications to
correct coding mistakes, more comprehensive modifications to correct design mistakes,
or to accommodate new requirements (Sommerville, 2016). There are things that impair
software quality and make them hard to maintain and evolve like code smells. Code
smell 1s signs inside the code that indicate that there is a design flaw and is not in a
software error, where it may find codes full of these smells but they work just fine

without any problems.

To improve software maintainability, there are several refactoring techniques that
may apply to source code. Refactoring is a change made to the software's inner structure
to make it simpler to comprehend and cheaper to change without altering its behavior
such as Move Field, Move Method, Extract Method, Pull Up Field and Extract Class.
First, refactoring improves software design where changes to realize short-term goals or
changes made without a full understanding of the code's design the code loses its
structure, making it more difficult to see the design by reading the code and the poorly
designed code which usually requires more code to do the same things. Second, it
makes software easier to understand, programming is a write code conversation with a
computer that informs the computer what to do, and it reacts by doing precisely what
you say and programming in this mode is all about stating precisely what you want, but
somebody will attempt to read this code. But there's another user of this source code
which in a few months' time someone will attempt to read code to create some changes,
which means that additional code user can readily be forgotten. Third, refactoring helps
to find bugs, since understanding the code can help identify bugs that some can read a
bunch of code and see bugs. Lastly, it helps with programming quicker where the whole
point of getting a good design is to enable fast development and without a good design
can the progress rapidly for a while, but soon the bad design starts slowing down the
developer and thus spend time finding and fixing bugs instead of adding a new feature
where modifications take longer as an attempt to comprehend the system and discover

the duplicate code (Fowler & Beck, 1999).

Classes usually start small, but over time they become larger as the software
expands. As is the case for long methods, programmers usually find it less exhausting
mentally to put a new feature in an existing class than to create a new class for the
feature and important to improve any program's structure, maintenance and improve
performance where refactoring is the key to improve both the quality of the code
(Fowler & Beck, 1999). The extract class refactoring method will help maintain
adherence to the single responsibility principle and classes are more reliable and

tolerant of changes.

Class normalization techniques are not yet as popular as refactoring or pattern
application. Class normalization is a process through which object schema structure is
reorganized in such a way that class cohesion is increased with coupling is minimized
between classes. The Repeating data structures are refactored into their own class to
place a class in the first object normal form (1ONF). When encapsulating the shared
behavior required by multiple entities within its own class, a class is in the second
object normal form (20NF). A class is in the third object normal form (30NF) when
implementing a single, cohesive set of behaviors (30NF) (Ambler, 2003). Hence, this
study will focus on the challenge of using the class normalization rules to refactoring

large class and extracting into classes with a high coherence and a specific behavior.

1.2 Motivation

Programmers may encounter software that were difficult to maintain and develop.
Often the original developer of this kind of software had left the organization or
continuous modifications making the source code more complex and drifting away from
its original design and becomes complex and difficult maintenance, leaving other
developers to deal with the situation that detecting badly structured code. Also, one of
the key messages of software evolution is that software products need to be
continuously modified to maintain the competitive edge and main point is that
continuous modification makes software structure more complex, unless effort is made
to reduce this complexity. One way to reduce this complexity is refactoring, which aims
to improve the software structure without changing the software behavior and
preventing these problems and benefit the working environment of software developers,

and help organizations by making their software development more productive.

)

1.3 Problem Statement

Classes of system undergo continuous modifications making the source code more
complex and drifting away from its original design so the class becomes very complex,
multi-responsibility, difficult to maintain and its quality deteriorates. This problem is
known a large class that is one of the code smells where a class with too much code 1s

prime breeding ground for duplicated code and chaos.

1.4 Objectives

This research aims to improve extract large class smell by applying class
normalization rules, where the large class 1s one of the code smells that increase
difficult of software maintenance, as the system needs to be constantly modified and
developed after testing or delivery, either by fixing errors or adding new features.
Therefore, the presence of a class or classes full of variables and methods with different

behavior makes the system environment chaotic and disorganized.

However, this research addresses some issues in software development. The first
issue 1s the degraded and unarranged system structure. The second issue is costs and

effort of Maintenance . In more detail, the objectives are:

e To decrease the large class by separating it into classes with strongly related and more
similarity attributes and behaviors in order to increase the focus of class because the
more that code in a class supports a central purpose, the more easily knowing
everything the code does.

e To evaluate the conformity of the extracted classes with the class normalization rules in
order fo determine these all classes or one are identical or need to enhance and

refactoring.

1.5 Scope and Limitations

The scope of study in software engineering and development which was built on
Microsoft .NET technologies, specially C# .Net language, that based on refactoring
large class smell to smaller classes according to class normalization rules. The large
class would be extracted according to similarity and cohesion of variables and methods.
Although refactoring could be used with any development and applied on other code
smells which identified M. Fowler in his book (Fowler & Beck, 1999), but this study is

limited on the large class smell and how treated with it.

1.6 Research Approach

In order to perform the objectives of this research, the steps involved in this research

are as shown in Figure (1.1).

Problem Identification

Analysis of Current Techniques

|

Proposed Approach

Implementation

Optimizing Large Class Smell

Testing

|

Evaluation

Figure (1.1) Diagram of Research Approach

1.6.1 Problem Identification
This problem is known as a large class smell which is one of the smells of code
where system classes will undergo continuous modifications which make the source

code more complex and ground for chaos and drift away from the original design.

1.6.2 Analysis of Current Techniques
A number of studies will be analyzed to know the current techniques used in the
code refactoring and improving the smell of the large class such as, the design
pattern, code reorganization. The result will be shown how these techniques work
and what distinguishes each one from the other and the strengths and weaknesses of

each, and the most important limitations that this study try to solve.

1.6.3 Proposed Approach
The proposed method for extracting large class by simulating the three rules for
normalizing classes (10NF, 20NF and 3ONF). The method boils down to take a
class with many responsibilities , after that produce an access-set table of attributes,
and then calculating the Jaccard similarity index to create a similarity matrix for
attributes. The structural similarity matrix will be created to compute the cohesion
of each class, thus achieving the third rule for normalization, so the class is

behaviorally coherent.

1.6.4 Implementation

The study will be applied to the C#NET language of Microsoft. NET
technologies. Study i1s based on extraction of large class odor to smaller classes
according to the rules of class normalization. The large class will be extracted
according to the similarity of variables and methods and their cohesion. The method
boils down to taking a class with many responsibilities nominating for extraction,
where the parser produces an access-set table of attributes, then the similarity matrix
of the attributes will be calculated by calculating the similarity ratio of Jaccard
which measures the similarity between two sample sets. Thus, the matrix for
similarity has values in [0 , 1]; where the value of 1 for a number of attributes
indicates that it is in the same class with the methods to which it relates. As a result
of the original class extraction, a number of classes proposed are consisting. The
structural similarity matrix will be created by summing the similarities of all method
pairs and dividing by the total number of such pairs to compute the cohesion of each
class. And according to results of calculating this metric, extracted classes will be

evaluated as coherent or incoherent and requires re-extraction.

1.6.5 Optimizing Large Class Smell
A method to optimize extraction of large class smell using class normalization
rules to ease maintenance and improve software quality by creating new classes

with strong and similarity attributes and shared behavior.

1.6.6 Testing
In this stage, will be tested the proposed method on the C# class which has a set
of operations that manipulate the user entity in the database such add a user, editing

user, etc. However, this class contained two other responsibilities, i.e., the Teaching

Entity management and the Role Entity management. The required is to separate
this class so that each entity becomes in a separate class and with a specific
responsibility of defining single responsibility methods in the class. The results will
be shown the ability of the proposed method to extract the class, where the class was

separated into three classes, each containing the code for its tasks.

1.6.7 Evaluation
The method will show the importance of refactoring to enhance class quality and
simple the maintenance, where it improves class structure, makes more organization
and provides better performance in software evolution compared with existing
methods, and increases the size of software to increase the number of classes from

its disadvantages.

1.7 Research Contributions

The extract class refactoring technique introduced in this study evaluates the
cohesiveness of a given class and suggests re-factoring the class by extracting new
classes which coherence and shared behavior of these classes will be shown. Also, the
importance of the research that set class normalization rules as criterion of extracting

large classes for specifying its cohesion, behaviors and responsibility.

1.8 Structures of Thesis

This thesis is organized into five chapters. Chapter 2 provides necessary
terminology, concepts and background regarding the subject and to understand the rest
of thesis. Chapter 3 shows the most important literature and related work illustrating
the importance of refactoring and the proposed approaches of extracting the large class,
showing its mechanism, strengths and limitations. Chapter 4 details of the design and
implementation of the proposed approach to extract the large class, experimenting with
it, and showing and discussing the results of the experiment. Finally, Chapter 5 presents

a conclusion of the study and proposes what should be done as future work.

CHAPTER 2: BACKGROUND

2.1 Overview

Software engineering is an engineering branch associated with development of
software product using scientific principles, methods and procedures. This chapter gives
an introduction about software engineering and its importance for building software.
And reviews the maintenance phase, which is one of the stages of SDLC, explaining its
importance, types and cost impact in the SDLC, clarifying the difference between it and
software reengineering. Refactoring is a change makes to the software's inner structure
to make it simpler to comprehend without altering its behavior. This chapter introduces
the refactoring, how it to affect on the software system and lack of influence on the
behavior of the system. Then, presents the code smells, and how to affect the system
code and classes, explaining briefly their types and what possible solutions for each.
Also, 1t gives an extensive explanation of the large class that is the subject of this
research, clarifying what it, how arises and the best solution to extract and improve it. In
end explains, class normalization technique that is a process through which object
schema structure is reorganized in such a way that class cohesion is increased with

coupling 1s minimized between classes.

2.2 Software Engineering

Software engineering is an engineering discipline that covers all aspects of software
development from initial design through to operation and maintenance, where software
1s not just an app or programs, furthermore, it also includes all the digital documentation
required by system users, quality assurance personnel and developers to ensure that
security, reliability and safety, efficiency and acceptability are key technology features
and are relevant and important for two reasons. The first of them, individuals and
society depend on advanced software systems, so reliable and trustworthy systems need
to be developed economically and rapidly. The second is that it is usually cheaper to use
software engineering methods and techniques for professional software systems in the
long run rather than just writing programs as a personal programming project

(Sommerville, 2016).

2.3 Software Maintenance

The IEEE defines software maintenance in their /EEE standard for Software
Maintenance (IEEE 1998) as:

“Modification of a software product after delivery to correct faults, to improve

performance or other attributes, or to adapt the product to a modified environment.”’

Also, software maintenance stands for all the modifications and updates done after
the delivery of software product. There are a number of reasons, why modifications are

required, some of them are as follows (Software Engineering Tutorial, 2014):

e Market conditions where policies, which changes over the time, such as taxation
and newly mtroduced constraints may trigger need for modification.

e Client Requirements who may ask for new features or functions in the software.

e Host modifications where if any of the hardware and/or platform (such as
operating system)of the target host changes, software changes are needed to
keep adaptability, software changes are needed to keep adaptability.

e Organization changes that if there is any business level change at client end,
such as reduction of organization strength, acquiring another company, need to

modify in the original software may arise.

A study on estimating software maintenance found that the cost of maintenance is as

high as 67% of the cost of entire software process cycle.

Requirement

Designing

Implementation

Testing

Maintenance

Figure (2.1) Software Life Cycle Cost

10

In a software lifetime, type of maintenance may vary based on its nature. It may be
just a routine maintenance tasks as some bug discovered by some user or it may be a
large event in itself based on maintenance size or nature. Following are three types of

software maintenance (Sommerville, 2016):

1. Fault repairs: Coding errors are usually relatively cheap to correct, while design
errors are more expensive because they may involve rewriting several program
components.

2. Environmental adaptation to adapt the software to new platforms and
environments where this type of maintenance is required when some aspect of a
system’s environment, such as the hardware, the platform operating system, or
other support software.

3. Functionality addition to add new features and to support new requirements
where this type of maintenance is necessary when system requirements change

in response to organizational or business change.

2.3.1 Software Reengineering

Software maintenance involves understanding the program that has to be
changed and then implementing any required changes. However, to make legacy
software systems easier to maintain, we can reengineer these systems to improve their
structure and understandability. Reengineering may involve redocumenting the
system, refactoring the system architecture, translating programs to a modemn
programming language, or modifying and updating the structure and values of the
system’s data. The functionality of the software is not changed, and has two
important advantages, one of them is reduced risk and another, reduced cost

(Sommerville, 2016).

The nexus between business reengineering and software engineering lies in a
“system view.” As managers work to modify business rules to achieve greater
effectiveness and competitiveness, software must keep pace. In some cases, this
means the creation of major new computer-based systems. But in many others, it

means the modification or rebuilding of existing applications (Pressman, 2010).

11

2.4 Refactoring

The Cardinal law of software evolution is that evolution will boost a program's
internal efficiency (McConnell, 2004), and one of the primary techniques is to refactor.
The primary objective of refactoring is to improve current code design. Without
refactoring, as a result of successive modifications and extensions, the program's design

will automatically decay.

Refactoring is process of changing a software system in such a way that is not done
alter the external behavior of the code yet improves its internal structure (Fowler &

Beck, 1999).

Code refactoring 1s a disciplined technique to restructure an existing code object,
modifying its internal structure without altering its external actions, performed to
enhance some of the software's non-functional attributes. This is typically done by
applying a series of "Refactoring," each of which is (usually) a tiny change in the source
code of a computer program that does not change its compliance with functional
requirements. Advantages include increased readability of code and decreased
complexity to enhance source code maintenance, as well as a more flexible internal

architecture or object model to enhance extensibility (Kaur & Kaur, 2016).

The importance of refactoring lies in several reasons, as clarified by Fowler (Fowler

& Beck, 1999) as follows:

e Making software easier to understand. Programming is a write code
conversation with a machine that tells the computer what to do, and it responds
with what you're doing, because one of the aims of refactoring is that software
would be easy to understand and source code would be self-documenting,
making it easier for another user to understand and alter this source code.

e Helping to find bugs. Understanding the code will help identify bugs that some
people can read a lot of the code and see bugs, and refactoring will allow
programmers to write stable code much more effectively.

e Improving the design of software. This argument goes hand in hand with the first
argument, since good design is easy to understand where a change made without
a complete understanding of the design of the code loses its structure and

requires more code to do the same things.

12

e Helping program faster. This argument is supported by the software evaluation
laws according to which raising the complexity of the software system will
impede the development of software where the whole point of getting a good
design 1s to enable fast development and without a good design can advance

quickly for a while, but soon the bad design begins to slow down developers.

2.5 Code Smells

A code smell 1s a surface indication that typically corresponds to a system's deeper
problem. There are a couple of points in this fast description. First, a smell is something
that 1s easy to detect-or sniffable by definition. A long method is a good example-just
look at the code. The second is that there is not always a problem with smells. Most
long strategies are all right. You have to look deeper to see if there is an underlying
problem there-odors on their own are not inherently bad-they are often a symptom of a

problem rather than the problem itself (Fowler & Beck, 1999).

Code smells are implementation structures that adversely affect system lifecycle
properties such as comprehensibility, testability, extensibility and reusability; that
means, code smells ultimately leads to maintenance problems. So, smells in software
systems can affect the quality of software and make it difficult to maintain and develop.
There are several types of code smells that can be classified into units, each of which
contains a group of types of smells and the following table describes and refactors

methods of them (Singh & Kaur, 2017):

Table (2.1) Code smells Types

No Unit Smell Description Solution
A method has many lines of code. Ex.tract Metlind, Replace Heiop
Generally speaki any method With Query, Introduce
Long Method Y PEaRIg; Y Parameter Object and Preserve
longer than ten lines should cause you Whole Obiect. Replace
to begin asking questions. L
Method
Laree Class A class contains a lot of code fields, | Extract Class, Extract Sub
ek methods, or lines. Class
contain similar oups of variables | EXTEt Clas,Introduce
Data Clump group : Parameter Object and Preserve
(such as parameters for connecting to :
Whole Object
a database).
1 Bloaters Replace Data Value With
Object, Replace Type Code
Use of primitives instead of small Wilh C'IE.ISS, Replace Type
s o : : Code With Subclass., Replace
Primitive objects for simple tasks (such as Type Code
Obsession c1tllrrency, ranges,t special strings for With State Strategy, Extract
DR ers, £ic) Class, Introduce Parameter
Object And Replace Array
With Object.
Long :
Parameter For a method, there are more than | Replace Parameter with
List three or four parameters. Method
Extract Method, Move
Switch There's a complex turn operator or if | Method, Replace Type Code
Statements | statement. with Subclass or Replace Type
Code with State
Temporary fields only get their values
Temporary | under certain conditions (and are | Extract Class, Introduce Null
Field therefore needed by objects). They | Objects
are empty outside these conditions.
N Ol?eln?tzct:iton When a subclass only uses some of its
Abusers ptenis mhe.nted me.:thods .aud Push Down Method Push
Refused resources, the hierarchy is off-kilter. :
. Down Field, Replace
Bequest Unneeded methods may either go T U ——
unused or be redefined to make g
exceptions available.
Alternative ;
Classes with g:;o t;LaSSZF’a‘?eo ﬁf,f;ﬁe falglc;;mjt’. Rename Method, Move
Different shatio ds,y Method, Extract Superclass
Interfaces ’
e When making changes to a class,
ch\];e;ngest often unrelated methods need to be | Exfract Class
g modified.
Shot This smell occurs when there is one
Change Sur %lm type of change that results in many | Move Class or Move Method
3 Preventers ety changes to several different classes.
Parallel The need for a subclass to be
Inheritance | generated for another class when | Move Method or Move Field
Hierarchies | constructing a subclass.

14

Table (2.1) Code smells Types (Cont’d)

No Unit Smell Description Solution
It happens when a class was intended to be
fully functional but after some of the :
Lazy Class | refactoring it has become ridiculously small or Co_llapse HhEparelly e
azy : & Y Inline Class
it was designed to support future development
work that never got done.
Encapsulate Field or
This smell hz_lppens when}a class inc_ludes only Eﬁ;?gj;ﬂ;z tglogllec‘non.
Data Class S;li{lil Safze tlllllzedls); . getters/setters without any Metlod Move M eﬂxq d
or Extract Method, Hide
Method
Duplication usually occurs as several
programmers operate on different parts of the
Duplicate same soﬁ?vare at t.he same time. Since they | Extract Method, P1.1]1
4 Dispensables Cods are operating on different tasks, they may be | Up Method, Substitute
unaware that their friend has already | Algorithm.
developed a similar code that could be
reworked for their own purposes.
A variable, parameter, field, method or class
is no longer used when program specifications
have modified or changes have been produced | Collapse Hierarchy,
Dead Code | and no time has elapsed to clean the old code | Inline Class, Remove
and is also contained in complicated | Parameters
conditionals where one of branch is
unreachable.
There is ar} unused c.lass, me.:thod, field or Collapse Hierarchy,
Speculative parameter h: here co%e ;ls som&;ﬁtmles cr::;lted to Tk s Rt
Generality suppor.t the expected future features that are | o ameters Metho ds.
never implemented. As a result, the code is Retmove Methodé
difficult to understand and support.
A message chain occurs when a client
- requests another entity; the object_ requests | Hide DELEGATE,
Chains another one, anq SO Om. S.ll.ch chains mean | Extract Method and
that the client relies on moving along the class | Move Method.
5 | Encapsulators structure.
This smell can be the product of the | Remove Middle Man,
Middle Man overzealous removal of Message C'ha_ins, Inline Me‘rhod Replace
where a class executes only one operation, | Delegation with
which delegating function to another class. Inheritance
A method has more access to the data of
Feature another object than its own data. Where it Move Method and
Eavy may occur after the ﬁelds have bee.n moved to Extract Method
the data class. In this case, there is a need to
move data operations to this class as well.
6 Couplers Move Method or Move
Field, Change
Inappropriat | This smell happens when a one class uses the | Bidirectional
e Intimacy | inner fields and methods of another class. Association to
Unidirectional, Extract
Class, Hide Class
Incomplete | When libraries stop meeting the needs of the MoNe Me‘rhod..
Library user. The only solution to the problem is to Infroduce Fore i
Class change the library. Method, Intr(?duce
Local Extension
7 Others When the author discovers that his or her code
is not intuitive or apparent, comments are | Extract Method or
Comments | usually made. Comments in such situations | Rename Method,
are like a deodorant that hides the odor of | Introduce Assertion.

fishy code that can be changed.

15

2.6 Large Class

The large class 1s one of code smells that contains many fields, methods or lines of
code. As with a class with too many instance variables, a class with too many codes 1s
prime breeding ground for duplicated code, chaos, and death. The simplest solution is to
eliminate redundancy in the class itself. If you have five hundred-line methods with lots
of codes in common, you may be able to turn them into five ten-line methods with
another ten two-line methods extracted from the original (Fowler & Beck, 1999).
Traditional way of measuring class size has been to measure the number of attributes
and methods, but the best measure of class size is class cohesion. Class cohesion
metrics such as Lack of Cohesion Methods can sometimes be difficult to calculate. So
in such cases, the number of methods and attributes should be used as a measure of

class size.

Refactoring of these classes that splitting large classes into parts avoids duplication

of code and functionality and the following methods using to split:

e Extract Class. This helps if part of the behavior of the large class can be spun
off into a separate component, e.g. having the phone details as part of the
Customer class 1s not a realistic OO model, and also breaks the Single

Responsibility design principle as shown in Figure (2.2).

public class Customer
{
rivate String name;

public class Customer 5 i ; ; _
{ private Phone workPhone;
private String name; — } _
private String workPhoneAreaCode; public class Phone
private String workPhoneNumber; {
} private String areaCode;

private String number;

t

Figure (2.2) Extract class

e Extract Subclass. The extract helps if part of the behavior of the large class can
be implemented in different ways or is used in rare cases. When a class has

features (attributes and methods) that would only be useful in specialized

16

shown m Figure (2.3).

public class Person

{

private String name; —>

private String jobTitle;
3

instances, can create a specialization of that class and give it those features as

public class Person

{

protected String name;

}

public class Employee extends
Person

{
private String jobTitle;

1

Figure (2.3) Extract subclass

public class Customers

{

private String name;

public String getName()
{return name;}

public void setName(String
string)

{ name = string; }

public String toXML()

{

return "<Customer><Name>" +
name + "</Name></Customer>";

}

Extract Interface. This helps if it is necessary to have a list of the operations and

behaviors that the client can use as shown in Figure (2.4).

public class Customers
implements SerXML

{

private String name;
public String getName()
{return name;}

C—>| public void setName(String

string)

{ name = string; }

public String toXML()

{

return "<Customer><Name>" +
name + "</Name></Customer>";

public interface SerXml {
public abstract String toXML();

}

Figure (2.4) Extract interface

2.7 Class Normalization

Class normalization is a technique or process by which we reorganize the structure
of object schema in such a way as to increase the cohesion of classes while minimizing
the coupling between them for improving the quality of object schemas. Cohesion is the

degree to which the aspects of an encapsulated unit (such as a component or a class) are

17

related to one another. While coupling is the degree of dependence between two items

(Ambler, 2003).

2.7.1 Class Normalization Rules
The rules of class normalization are discussed and how these works, further in
the following sections.
a. First object normal form (10NF)
Suppose the class in Figure (2.5) that needs to normalize and can say class is
in OONF. A class 1s in I0ONF when specific behavior required by an attribute
that 1s actually a collection of similar attributes is encapsulated within its own

class as shown in Figure (2.6).

Student Seminar
Student :
studentNumber seminarlD
e studentMumber seminarLocation
name startDate
address address 0.* takes 1. |endDate
phoneNumber phoneNumber time
seminars : professorlD
g?udpsse;nrr:ri]r?e:(rg) professorName
addSeminar : courseNamne
. 0 printSchedule() courseNumber
dropSeminar()
printSchedule() addStudent()
setProfessor() dropStudent()
setCourseNama() se{groress:]r() 3
: setCourseName
Bt Emina Sngti) getSeminarLengthi)
Figure (2.5) OONF Figure (2.6) IONF

b. Second object normal form (20NF)
A class 1s in 20NF when it 1s in 10ONF and when “shared” behavior required
by more than one instance of the class is encapsulated within its own class(es) as

shown m Figure (2.7).

Seminar
Student i

. seminarlD name

ﬁa%zn s 0.* takes 1.* |seminarLocation number

phaneNumber sLaidrBD?te 0.7 offering of B 1| getSeminarList()

address ke createSeminar()
time

addSemina

dropSeminar?[) addStudent() Professor

orntSchedule() dropStudent() 0.* teaches 1 e
setProfessor() emoloveelD
setCourseName) 4
getSeminarLength() getSchedule()

Figure (2.7) 20NF

18

¢. Third object normal form (3ONF)

A class 1s in 30NF when it 1s in 20NF and when it encapsulates only one set

of cohesive behavior as shown in Figure (2.8).

0.* offering of ® 1

Seminar Course
Student _
seminarlD name
studentNumber 0.* takes 1.* |seminarLocation . number
g fime = getSeminarList)
MmN T addStudent() createSeminar()
b
0.1 |addSeminar) dropStudent() [
—— dropSeminar() setProfessor() teaches 1
Professor
printSchedule() setCourseName()
name
employeelD
L taught getSchedule)
T during
Address ZipCode
B p s 1+ DateRange
1 |street number - i
unithumber validate) 1. ey
validate) : asLabel()
formatZipCode) L " contains)
1% State %’m getLength()
1 |name 1 Bin
kin g |cOdE 1+ A
A
Bin
5 0.1 aly 0.r
name
15
getFullName()

Figure (2.8) 3NOF

2.7.2 Class Normalization and Refactoring

Class normalization and refactoring fit together quite well-as normalizing
classes will effectively be applying many known refactorings to object. Whereas a
fundamental difference between class normalization and refactoring is that class
normalization is performed to class models and refactoring are applied to source code.
Although the techniques of class normalization aren’t yet as popular as refactoring or
the application of design patterns, that they are important because they provide a very

good bridge between the object and data paradigms.

2.8 Remarks

This study focuses to extract the large class smell by applying the rules of
normalization of classes (10NF, 20NF and 30NF). Class normalization is a process by

which you reorganize the structure of object in such a way as to increase the cohesion of

19

classes where extract class by applying these rules to split into new class(s). Which will
contribute to organize the structure of the code and, thus facilitate the maintenance

phase in the program life cycle.

2.9 Summary

This chapter provided an overview into the software engineering and maintenance
that clarifies what maintenance represents from the cost of the software life cycle. And
code smells have an impact on the program's maintenance process, although they have
no clear effect on the program's work, but affecting in the program's structure.
Reviewed the solutions which contribute to solve the code smells where explained the
refactoring and importance and types, and the most important solutions provide for each
type of smells. Presented details for the large class smell, which is the subject of our
study and how can solve with several methods. Also, gave a definition of the rules of

normalization of classes, importance and relationship to refactoring.

20

CHAPTER 3: LITERATURE REVIEW

3.1 Overview

A number of studies were conducted for bad smells of programming codes and
various authors have studied the impact of refactoring of the source code. This chapter,
shows studies and researches that all agreed on the effect of the code smells on the
quality and maintenance of the software, some of them presented methods to detect and

others focused on how to apply methods for refactoring of code.

3.2 Related Works
Marcus et al. (2008) proposed a new Object-Oriented (OO) software class cohesion

measure based on the analysis of unstructured information embedded in the source
code, which called the Class Conceptual Cohesion (C3) such as comments and
identifiers, where structural and conceptual metrics are combined to provide better
models for classes faults prediction than combinations of structural metrics alone. In
this approach it was noted that the approach does not take into account polymorphism
and inheritance, and its reliance on the existence of naming's conventions for the
relevant identifiers and comments, and when these are missing, the effect on measuring
the coherence of the class appears.

Bavota et al. (2011) proposed a method based on graph theory that exploits
structural and semantic relationships between methods in a class to be refactored that to
build two new classes having higher coherent than the original class. Bavota et al.
(2014) came back to update of the previous work, where they presented a method chains
used to define new classes with a higher coherent than the original class, while
preserving the overall coupling between the new classes and the classes that interact
with the original classes. This study distinguished its ability to increase the strength of
cohesion of classes without a significant increase in coupling, but relying on generalized
results from master's sample experience poses a threat.

Chu et al. (2012) presented test case refactoring for extreme programming which
leads to faster development. Two patterns from the Gang of Four were selected for the
application of refactoring and the validation of study. The approach not an automatic
completely, where the refactored application code or test cases cannot be generated
automatically, because refactorings are applied to the whole refactoring process
frequently.

Al Dallal (2012) proposed a model that was applied to automatically predict the
classes that need ESR and present them as suggestions for developers working to

22

improve the system during the maintenance phase, as the models created using studied
quality metrics showed high capabilities to separate the classes in those that were in
need and those that did not need to resell housing. This model was slow and time
consuming, because does a complete scan of the code and analyzed the relationships
between the layers to determine the classes.

Fokaefs et al. (2012) introduced a method accompanied by tool-based for
identifying source code chunks which collaborate to provide a particular job and
propose extraction as detach methods. The proposed work identified the design defects
with the Eclipse plug-in which affected coupling and cohesion. Suggestions could have
been better and more complete if the clustering algorithm was combined with other
methods, like code duplication detection techniques.

Dexun et al. (2014) suggested that classes that were not functionally related could
generate software maintenance problems, hence the detection and refactoring of such
classes was necessary. The basic process is to gather the dependence relationships
between classes, calculate the invoking rates and compare them with dynamic threshold.
But the thresholds in FRC bad smell detection that are preset thresholds decrease the
veracity of detection results.

Bavota et al. (2015) presented an experiment aimed at investigating the
characteristics of code components increasing their changes of being subject to
refactoring operations where was verified whether refactoring activities occur on classes
for which indicators might indicate to be needed for refactoring, such as quality metrics
or the presence of smells as detected by the tools-suggest. Quality metrics have not
demonstrated a clear relationship with refactoring in some cases, where metrics may not
be per se indicators of smells.

Kaur & Kaur (2016) used Eclipse tool to refactor the bad smells and make an easy
source code to understand. The complexity of the project was then calculated and
compared with the initial complexity, and the results were checked. This study
confirmed the importance of refactoring that makes a code easier to understand and
improve the quality and reduce the maintenance cost.

Zafeiris et al. (2017) proposed a method for automated refactoring to the template
method design pattern of certain design flaws related to concrete method overriding,
where an overriding method includes in its body an invocation to the overridden method
through the super keyword (super-invocation), then applied the Template Method
design pattern for the elimination of appropriate Call Super instances from a code base,

23

which introduced an algorithm for the discovery of refactoring opportunities based on a
broad set of preconditions for the refactoring. Consequently, the results of this study
cannot be generalized to a project or projects written in another programming language
other than java.

Morales et al. (2018) presented a novel approach for automatically scheduling
refactoring operations for correcting anti-patterns in software systems where conducted
a case study with five open-source software systems and compared the performance of
RePOR with the performance of two well-known metheuristics (GA and ACO), one
conflicting-aware refactoring approach (LIU), and a recent metaheuristic based on
sampling (Sway). Results showed that RePOR can correct more anti-patterns than the
techniques in just a fraction of the time, and with less effort. However, was compared
with genetic algorithm which, is known has computationally expensive, i.e. time-
consuming, so this poses a threat for results of the approach.

Turkistani and Liu (2019) designed a method for dealing with the Large Class
problem by classifying the causes of the code smell and applying different design
patterns to refactor the code to improve the quality of the software, analyzing the causes
of the Large Class code smell and classifying them into corresponding types and
proposing a design pattern to address each type to refactor the code. So approach helped
to refactor the code to make the maintenance, modification, and reusable easy.

Mooij et al. (2020) presented an exploratory case study that aimed to rejuvenate an
industrial embedded software component implementing a nested state machine. Where
develop and apply a series of small, automated, case-specific code refactorings that
ensure the code uses well-known programming idioms, then perform model-based
rejuvenation focusing on the high-level structure of the code. And therefore gives ample
opportunity to be validated early in the form of code reviews and testing since each
refactoring is carried out directly on the existing code. Moreover, aligning the code with

the type of model simplifies the extraction, making the process less error-prone.

3.3 Critical Evaluation on Existing Approaches

The previous literature contained a number of limitations where some of them did
not exploit program properties such as highly cohesive, exclusivity of similarity and the
extent of applicability to other platforms, and that was concluded from its analysis and

shown in Table (3.1).

24

Table (3.1) Literature Review Summary

. = Result Notes
No | Author(s) Title Source Technique
Strength Limitations
Using the Analysis of the unstructured information embedded o The combination of structural and conceptual * TheC3 Ema..pn a.mm.ﬁam.ﬂ: _.mmmo:.mEm
i the source code, such as comments and : : ’ naming conventions for identifiers and
) Conceptual z e . : cohesion metrics gave better models for the T : :
A Marcus, D. : IEEE identifiers which named the Conceptual Cohesion A7 i relevant comments contained in the
Cohesion of : prediction of faults in classes than of
Poshyvanyk ; Transactions | of Classes (C3), and procedure a case study on) : source code.
1 Classes for Fault structural metrics alone. :
and R. Ferenc Prafiction i on Software three open source software systems and compare lisadl eebat o doait o * C3 does not take into account
(2008) Ob; n» _M_”. E: s Engmeering the new measure with an extensive set of existing -M,Me:m%. mM. e HEE.M 0 .oo_.ﬁ = .a“ polymorphism and inherntance in its
mS»m.mn vkl metrics and use them to construct models that amw o om& mn_ mmmmmmo_mm Qw Toeacn current form.
ystems predict software faults. rease the cohesion ofa class.
Identifying Extract Graph theory was used to represent a refactored
G. Bavota, A. Class refactoring T lof class, where each node represented a method of the | e The merged classes showed have cohesion
5 De Lucia, and opportunities using moE»M_msmOm od class and the weight of an edge that connected two much lower than the origmal classes. The original class divided to two classes
R Oliveto structural and wwm?a.m_.m nodes (methods), and then A MaxFlow MinCut * The refactored classes have a much better only.
(2011) semantic cohesion algorithm was used to split the built graph m two quality than the merged classes.
measures sub-graphs.
A test case #The approach not an automatic
P-H. Chu, N.- abisorn, Illustrated test case refactoring for extreme completely.
L. Hsueh, H.-) r_mu) Software programming which leads to faster development. | This approach specified the role-based pattem eSome refactorings, such as Rename,
3 H. Chen, and mwm_%wncmmw_ d Quality Two patterns from the Gang of Four were selected | structures for the functional and nonfunctional Extract Interface, or Introduce Parameter
C-H Liu P y Journal for the application of refactormg and the validation | mtents in the initial phase. require developers to give appropriate
software 4
(Mar, 2012) of study. names for the new methods, variables, or
development
parameters.
Constructing * A strong relation between the internal
models for qualities attributes of a class and its need for
predicting extract Tnformation Logistic regression analysis was applied to predict | ESR without analyzing the external relations Inspecting the whole code and analyzing
4 J. Al Dallal subclass s classes in need of ESR where analysis showed a | between the class of mterest and other classes. | the relations among the classes to
(Oct, 2012) refactoring .mH_b :bog AL strong relation between the internal qualities | e Models constructed using the quality identify the classes in need of ESR took
opportunities using SCANA0SY attributes of a class and its need for ESR. metrics showed high abilities to segregate fime consuming.
object-orented classes into those that were in need and those
quality metrics that were not m need of refactoring.
* Suggestions could have been better and
M. Fokaefs, N. | Identification and An approach accompanied by a tool that worked at) : more complete if the clustering algorithm
Tsantalis, E. application of Teimsarer identifying source code chunks that collaborated to ._ W\“Mmyoaaﬂma _Mhonmmmﬁmﬂnzm%wwwﬁmb d was combimed with other methods, like
Stroulia, and Extract Class provide a specific functionality and their extraction Py &8 code duplication detection techniques.
5 e Systems and 5 extract classes. . ¢
A refactorings in o eia as separate methods. Then accuracy of the e Th o . . ed th #The tool interface does not provide many
Chatzigeorgiou | object-oriented proposed approach has been empirically validated nmm. mc.mmmm& _.W Q.:me _E_um.oa i e options for the user because it is a black
(Oct, 2012) systems both in an industrial and an open-source setting, SER OLRAYRIAM. I IS OE SOMANE: box and is often difficult to understand to

user.

Table (3.1) Literature Review Summary (Cont’d)

. . Result Notes
No | Author(s) Title Source Technique
Strength Limitations
Frinctional Ovet: Fiteriatisnal The @ngo: and refactored of classes which were « Cohesion increased and Coupling decreased. *The :ﬁ.mm:oam in FRC bad smell
J. Dexun, M. functionally mnot related where collected the : ? : : detection that are preset thresholds
Peii Related Classes Journal of . . This approach Hierarchies, Abstraction, - .
eljur, S. Bad Smell Software dependency relationships between classes, and R e, Colissn. s 4 decrease the veracity of detection results.
6 | Xiaohong, and Dikioh d B i computed the invoking rates and compared with OpnmvH e .oHMwH.Qr mﬁpwﬂwﬁw an i eDynamic thresholds are used for bad
W. Tiantian ONGE A igmeening dynamic thresholds, then the work was validated on GIAECR U EIE 1o PP B e smell detection, therefore the subjectivity
) Refactoring &) where increased the value of quality > ! St
(Mar, 2014) Silahestione Applicatiois four open source systems- HSQLDB, Tyrant, e 15 lower, and the detection 15 more
&8 PP ArgoUML and JfreeChart. Frep) accurate.
Method chamns that was used to define new classes
with ligher cohesion than the original class. Then
a comprehensive empirical evaluation of the | | Strongly increased the cohesion of the * Master’s students represented an
) 3) proposed approach performed through a two of : . g important threat related to the
G. Bavota, A. Automating extract . ; : refactored classes without leading to a i
: 5 s studies. In the first study an evaluated the quality AR : : : generalization of the results. Asa
DeLucia, A. class refactoring: Empirical £ oth factor Tuti onosed ik significant increase in coupling. esult of differ i :
7 | Marcus, and R. | an improved Software N e joactonniy SOULOLS proposed WASE | o Bias was avoided, where students did not o b
S - S, conducted a user study with 50 graduate students 22 between them and professionals.
Oliveto method and its Engmeering : é know the goal of this study or the 2
. asked them to rate the refactormg suggested by the : : e The extracted classes when splitting a
(Dec,2014) evaluation techniques which produced the suggested o 3 i
proposed approach on 17 Blobs from two open- factori Iuti Blob exhibited a worse division of
source systems. In Second study was camried out RGNS SOUI0nS. responsibilities than the Blob.
on eleven classes from six open source systems,
which actually underwent extract class refactorings.
The study has been conducted on 63 releases of
three open source projects, and was analyzed e Quality metrics did not show a clear
G. Bavota, A. An experimental manually of 15008 refactoring operations and relationship with refactoring.
De Lucia, M investigation on 5478 smells. Then a search was guided by a :) . e The refactoring only mitigated the
Di Penta, R. the mnate Topnal of quality evaluation function based on eleven object- Thes study has shown more often, quality problem, without however necessarily
8 . : ; Systems and : 2 R . standards do not show a clear relationship with oy
Oliveto, and F. | relationship Softwar onented design metrics (1.e., the CK metrics) that hhoas st removing completely the smell.
Palomba (Sep, | between quality OlyRre accurately reflects refactoring goals and used the DS TReInIEHOn, e The developer’s point-of-view of
2015) and refactoring symbol table and reference information together classes in need of refactoring did not
with simple code metrics, such as line and always match with “quality indicators™.
statement counts.
. The approach done by used an Eclipse tool to : : :
A Kaur and WMMEWG.&M%Q MATEC refactor the bad smells and make a source code ”M___:mua_uo%mhnm om_dmmﬁwszmcﬁww nﬂwm_.:umw The techni) lied s
9 M. Kaur aolonng- P Web of essay to understand. That were calculated the ReconunboRt i)k oy ot reGuoRd S ADRY 2 IBchue Wad apPie o aae
(2016) on Software Conferences complexity of project and compare it with initial the refactoring, source code only.
7 Quality P Proj P eRefactoring reduced the maintenance cost.

complexity and then check the result.

Table (3.1) Literature Review Summary (Cont’d)

Result Notes
No | Author(s) Title Source Technique
Strength Limitations
WM. thﬂwmm“ Automated An algorithm was used for the discovery of | *A satisfactory number of Call Super was : Hu%m_.wwcowm mw._w%m» Mﬂm»ﬂﬁmwﬂwﬂwam
Z. > : refactoring of Inf " refactoring opportunities that is based on an | elinmated proje pr _H. i ther 1t i
10 | Dinpasntidia super-class method m_: agmwwhuﬂ”.m extensive set of refactoring preconditions. These | eThe Specialization Index metric (SIX) in the i Eﬁdm»ﬁﬁ;ﬂﬂﬂm m._.HmMmmn < M.m._ Hm»b mma o
adE A invocations to the Technolo * | preconditions ensured that the suggested | affected subclasses was decreased. mnm: .mm »Mm.E .Mwm H_M_m Gﬂ.m: ey
Giakoutaalis Template Method &y refactorings can be safely applied to the source | eRuntime performance results that supported M M_M»__MMM.mmM_MMPgww.mmﬂwﬁmwo:&
design pattern code. the scalability of the approach. € s Z
(2017) the effectiveness of this method.
Automatically scheduling refactoring operations for
) : correctmng anti-patterns in software systems where) . ;
Wr_ zo_&mw“ E mﬂw“ma el GF conducted a case study with five open-source | ¢ RePORT can correct anti-patterns i just a 5 dﬁ.mv_u_o”w..: T NG onlyRE o
1 H._n%nw__s“ 4G _m_ ma.m_mnm based ond & q software systems and compared the performance of fraction of the time and with less effort. nmonnm Sys :wﬂ i etic alooriths
,P_WSMWHEH : MM..HH . iMmQ.MM. mwﬂmwﬂg RePOR with the performance of two well-known | e The approach relies reduction techniques * i o_»ﬁcmmhgm i H_ A B EM m&oH_.H i
(2018) i nw, i metheunistics (GA and ACO), one conflicting- from model checking. - MM&MMM;M wwﬁnmom.wcs Dy
i aware refactoring approach (LIU), and a recent &=p e) &
metaheuristic based on sampling (Sway).
o There are different causes of the
complexity, such as 1f, while, for, for
e . each, case, default, continue, go to, do,
O.Hmmmu.mma. E.m. cauzes of the code smell and applicd | The approach helped to refactor the code to and select. However, only addressed
’ different design pattems to refactor the code to : : : @ » it ab?
i Reducmg the) t make the maintenance, modification, and “if-else” and “switch” statements to
B. Turkistam Laree Class Code improve the quality of the software, analyzed the reusable ea reduce the complexity
12 | and Y. Liu & : IEEE causes of the Large Class code smell and classified S % P ; L
Smell by Appling . : : g : o Ability to use the method to reduce the long e There are many types of cohesion hike
(2019) : them mto comesponding types and proposing a : g 2
Design Pattemns design pattem to address each type to refactor the method or enhance the duplicate code, as coincidental, logical, temporal,
oda well. procedural, communicational,
’ sequential, and informational.
However, only addressed the logical
cohesion
Redicing Cods Rejuvenate an mdustrial embedded software | ¢ Giving opportunity to be validated early in . Monwwwmwﬁwwﬂﬂmw“ﬂ%ﬂ“m L
A J Mooy, J. Cotil & component implementmng a nested state machine, the form of code reviews and testing, since . H,,u alitativ ot mba
Ketema, S. :_N mp @Mq%@.m where developed and applied a series of small, each refactoring is carried out directly on SO .mnoz mwnwﬂwna.m m%mﬁm
13 | Klusener, and Hﬂmwmcnmw_é and IEEE automated, case-specific code refactorings that the existing code. . HHNEH& @—M R awrmw_uw mq -
M. Schuts Model Ha wm L3 ensure the code uses wellknown programming | e Aligning the code with the type of model Em” zomMoMM_MM.MQ 8 ratactoning steps
2020 s : idi th formed model-based rejuvenati impli i i :
() Refuvenation idioms, then performed m ased rejuvenation simplifies the extraction, making the o The e toematethe mbstoinaaiens

focusing on the high-level structure of the code.

process less eITor-prone.

was not considered.

3.4 Remarks

There were a number of limitations in the relevant literature, such as application to
specific systems and languages, for example Java, without indicating the possibility of
generalization on other platforms and languages. Also, not taking account inheritance
and polymorphism, dividing the class into two classes only and the need for developers
to rename the extracted classes. This research is applied on closed system and language
C#.net, divide the proposed class into two or more classes, keeping the class name, and

maintain the relationship as one class between them.

3.5 Summary

In this chapter, a literature review and previous research were shown, of which,
what provided ways to code smells detection and the need to address them because of
their impact on software quality, and others what provided solutions to rebuild and get
rid of these smells. Also, Some of these studies presented solutions to the large class
smell problem, for example, the design pattern, code reorganization and cohesion
metrics. The chapter also presented a summary of all previous related works, explaining

the techniques and methods used, and the strengths and weaknesses of each.

28

CHAPTER 4: DESIGN & IMPLEMENTATION

4.1 Overview

The proposed technique for extracting the large class is designed by applying the
rules of class normalization by creating a table of attributes access-set for the candidate
class. Then, creating an attributes similarity matrix using the Jaccard index. Therefore,
by calculating the values of the matrix the proposed classes are created. After, that the
coherence of each proposed class is tested by calculating the class cohesion criterion.
By testing and implementing the proposed approach of research and evaluating the
results will be obtained, and in comparison with some other relevant studies,
effectiveness 1s measured in the process of refactoring the code and extracting class.

This chapter takes that in detail.

4.2 The Proposed Extract Class Approach

The proposed method for extracting large class by simulating the three rules for
normalizing classes. A class is in 10NF when specific behavior required by an attribute
that 1s a collection of similar attributes, and when shared behavior required by more
than one instance of the class 1s encapsulated to be 20NF, lastly in 30NF when it

encapsulates one set of coherent behavior.

The method boils down to take a class with many responsibilities that is nominated
for extracting by the developer or automatically, where the parser to produce an access-
set table of attributes, then calculating the Jaccard similarity index to create a similarity
matrix for attributes as shown in Figure (4.1). The structural similarity matrix is created
to compute the cohesion of each class, thus achieving the third rule for normalization. In

the case of a high cohesion ratio, the class is behaviorally coherent.

30

Class C Attribute | Methods 3 4 &

. 3 |m..m %

) & m, ..., My
o Compmis - Jaccard similarity
g K Access-set Computation

my

f115] 3

m, dq so.s Mg)

Candidate Class Attribute Acccess_set Attributes similarity o)
o
=

—H L CasCl |- B
m a 14 E
i1} az E
CCI:“? ClassCoh SSM 2
‘h:es::::t computation computation :; i +—'4
m
fty o

ClassC1 |- —_—

:; 17 SSM matrix Proposed Classes

EY

my -

m:

=
Extracted Classes

Figure (4.1) Process of Extract Class (Class Refactoring)

4.2.1 Attribute Similarity Matrix

The attributes similarity matrix is calculated by computing the Jaccard similarity
ratio (Sharma & Murthy, 2014) that measures the similarity between two sample sets;
it represents a ratio between the sets intersection size and the sets union size as given
in Equation (4.1). Where access-set is a sample set; hence, computing Jaccard
similarity between each access-sets of two attributes until form a similarity matrix for
all attributes.
|A N B|
|A U B|

Similarity matrix has values in [0, 1]; where the value of 1 for a number of

J(A,B) = if [AUB| %0 (4.1)

attributes indicates that is in the same class with the methods that related to.
Consequently, a number of proposed classes are consisted as a result of the original

class extraction.

4.2.2 Structural Similarity between Methods Matrix

The structural similarity matrix of constituent classes is formed using the
structural similarity calculation between methods (SSM) as given in Equation (4.2)
(Bavotaetal., 2011):

31

|Ii N Ij|
SSM(mi,mj) = {|Ii U Ij|
0 otherwise.

if IiVIj|#0andi #j (42)
The SSM of mi and mj 1is calculated as the ratio between the number of
reference attributes that are shared by mi and mj methods and the total number of

attributes that are referenced by both methods.

4.2.3 Compute & Assessment Class Cohesion
SSM a measure exploited to compute the cohesion metric ClassCoh, by
summing the similarities of all method pairs and dividing by the total number of such
pairs as given in Equation (4.3) (Gui & Scott, 2008):
}'f}zlssM(mi, mj)

m2 —m

ClassCoh = (4.3)

where m 1s the number of class methods. According to results of calculating this
metric, extracted classes are evaluated so that the value between [0.50-1.00] indicates
the coherence of classes and less than that mean its incoherent and requires re-

extraction.

4.3 Implementation and Test of Approach

Example: Figure (4.2) shows part of the UserManagement class and from its name
and set of methods, this class was probably originally responsible for implementing a
set of operations that would allow the user entity to be manipulated in the database.
However, this class has two new responsibilities added, i.e., the Teaching Entity
management and the Role Entity management. The task is to separate this class so that
each entity becomes in a separate class and with a specific responsibility by defining
single responsibility methods in the class. The question here, do proposed approach able
that?. The names of methods in the class have been abbreviated, as follows: inserUser
(IU), updateUser (UU), deleteUser (DU), existsUser (EU), checkMandatoryFieldsUser
(CU), mserTeaching (IT), updateTeaching (UT), deleteTeaching (DT),
checkMandatoryFieldsTeaching (CT), inserRole (IR), updateRole (UR), deleteRole
(DR) and checkMandatoryFieldsRole (CR).

public class UserManagement

{

public void insertUser(User pUser)
bool check = checkMandatoryFieldsUser(pUser);
string sql = "INSERT INTO tblUser ...";

}

public void updateUser(User pUser)

{
bool check = checkMandatoryFieldsUser(pUser);
string sql = "UPDATE tblUser ...";

}

public void deleteUser(User pUser)

{
string sql = "DELETE FROM tblUser ...";

}

public void existsUser(User pUser)

{
string sql = "SELECT FROM tblUser ...";

}

public bool checkMandatoryFieldsUser(User pUser)

{ o0 }

public void insertTeaching(Teaching pTeaching)
bool check = checkMandatoryFieldsTeaching(pTeaching);
string sql = "INSERT INTO tblTeaching ...";

}

public void updateTeaching(Teaching pTeaching)

{
bool check = checkMandatoryFieldsTeaching(pTeaching);
string sql = "UPDATE tblTeaching ...";

}

public void deleteTeaching(Teaching pTeaching)

{
string sql = "DELETE FROM tblTeaching ...";

public bool checkMandatoryFieldsTeaching(Teaching pTeaching)

{ oo }

public void insertRole(Role pRole)

{
bool check = checkMandatoryFieldsRole(pRole);
string sql = "INSERT INTO tblRole ...";

}

public void updateTeaching(Role pRole)

{
bool check = checkMandatoryFieldsTeaching(pRole);
string sql = "UPDATE tblRole ...";

}

public void deleteTeaching(Role pRole)

{
string sql = "DELETE FROM tblRole ...";

public bool checkMandatoryFieldsRole(Role pRole)

{ o }

}

Figure (4.2) User Management Class

33

The following steps are representing an applying the proposed method on previous

class:

Step 1. Create Access-set table for all attribute (variables) in the class as shown in Table

4.1)

Table (4.1) Attributes access-sets

Attribute Access-set
pUser IU, UU,DU, EU, CU

pTeaching IT. UL, DT, CT
pRole IR, UR, DR, CR

Step 2. Calculate the Jaccard Similarity Index of attributes to build similarity matrix as

shown in Table (4.2)
Table (4.2) Attributes smilarity matrix (Jaccard)
pUser pTeaching pRole
pUser 1 0 0
pTeaching 0 1 0
pRole 0 0 |

Step 3. According to the values in Table (4.2), there are three proposed classes, where

each class contains attributes and methods belonging to as shown in Figure (4.3).

Class C1
+IU(pUser. User): void
+UU(pUser: User). void
+DU(pUser: User). void
+EU(pUser. User): void
+CU(pUser: User): bool

Class C2
+IT(pTeaching: Teaching).void

+UT(pTeaching: Teaching):void
+DT(pTeaching: Teaching):void
+CT(pTeaching: Teaching):bool

Class C3
+IR(pRole: Role)void

+UR(pRole: Role):void
+DR(pRole: Role):void
+CR(pRole: Role):bool

Figure (4.3) Proposed Extracted Classes

Step 4. Compute SSM for each proposed class as shown in Tables (4.3), (4.4) and (4.5)
Table (4.3) SSM Similarity of Class C1

U Uu DU EU CU
Iu 1 1 1 1
Uu 1 1 1 1
DU 1 1 1 1
EU 1 1 1 1
CU 1 1 1 1

34

Table (4.4) SSM Similarity of Class C2

IT UT DT CT
IT 1 1 1
UT 1 1 1
DT 1 1 1
4 & 1 1 1

Table (4.5) SSM Similarity of Class C3

IR UR DR CR
IR 1 1 1
UR 1 1 1
DR 1 1 1
CR 1 1 1

Step 5. Compute the cohesion of each class by calculate the ClassCoh metric by using

Equation (4.3).

Class cohesion of class C1, ClassCoh = ol 20— od 16
25—5 20

Class cohesion of class C2, ClassCoh = ml—i = E = 1.00

Class cohesion of class C3, ClassCoh = 12 = 100
16—4 12

The results indicate each class is completely coherent.

into 3 classes as shown in Figures (4.4), (4.5) and (4.6):

public partial class UserManagement

public wvoid insertUser(User pUser)

bool check =
string sql =

checkMandatoryFieldsUser(pUser),
"INSERT INTO tbluser ... :

public wvoid updateUser (User pUser)
{
bool check =

checkMandatoryFleldsUser(pUser),
string sql H

"UPDATE tbluser

public wvoid deleteUser (User pUser)

{
string sql = "DELETE FROM tblUser ...";
k|
public wvoid existsUser (User pUser)
{

string sql = "SELECT FROM tbluser 3

public bool checkMandatoryFieldsUser(User pUser)
{ --- ¥

Figure (4.4) Extracted Class C1 (UserManagement)

35

The candidate class extracted

public partial class UserManagement
public veoid insertTeaching(Teaching pTeaching)

bool check
string sql

checkMandatoryFleldsTeachlng(pTeachlng),
"INSERT INTO tblTeaching ..."3

public woid updateTeaching(Teaching pTeaching)

{
bool check

string sql

checkMandatoryF1eldsTeach1ng(pTeach1ng),
"UPDATE tblTeaching ...";

public void deleteTeaching(Teaching pTeaching)

{
string sql = "DELETE FROM tblTeaching ...";

public bool checkMandatoryFieldsTeaching(Teaching pTeaching)

Figure (4.5) Extracted Classe C2 (TeachingManagement)

public partial class UserManagement

{
public wvoid insertRole(Role pRole)
bool check = checkMandatoryFieldsRole(pRole);
string sql = "INSERT INTO tblRole ...";
b g
public wvoid updateTeaching(Role pRole)
{
bool check = checkMandatoryFieldsTeaching(pRole);
string sql = "UPDATE tblRole ...";
¥
public wvoid deleteTeaching(Role pRole)
{
string sql = "DELETE FROM tblRole ..."3
}
public bool checkMandatoryFieldsRole(Role pRole)
{ --- 1%
¥

Figure (4.6) Extracted Classe C3 (RoleManagement)

4.4 Evaluation of The Proposed Extract Class Approach

Based on the results of proposed approach in the preceding example. In Table (4.1),

an analysis of the class elements is shown, showing each class attribute or variable and
the methods belonging to. By calculating the similarity of attributes by the Jaccard
metric to be shown the results in Table (4.2) and by taking the attributes that
intersection between them and have a similarity value equal to 1, noticed that the pUser
variable was the result of similarity with itself only and there is no relationship with
other variables as well as the rest of the pTeaching and pRole attributes, so that each
attribute i a class with methods belong to, Figure (4.3) shows the three proposed

classes arising from the original class division. To measure the cohesion of the one

36

class, the calculation of the measure of the cohesion of the class is applied. So we need
to calculate the structural similarity between methods and the result is appeared in
Tables (4.3),(4.4) and (4.5). The results of calculating the classCoh metric showed the
extent of cohesion of each class where assumed a threshold value 0.5 to be any value
less than this, indicates weak the cohesive of class and needs to be refactored. Figure
(4.4), (4.5) and (4.6) show the extracted classes, and the keyword partial was used to
maintain class coupling, in the case of inheritance or a recall, with other classes in the

system.

4.5 Comparison of Results with Previous Works

A comparison of what was achieved using the proposed approach with previous
literature in obtaining extracted classes with single responsibility and more coherent
elements, and with differing the used mechanisms. The approach proposed by (Bavota
etal., 2011) creates a weighted graph for each class under evaluation. Class methods are
treated as nodes, and cohesion is assigned as edge-weights between methods. While the
presented methodology by (Fokaefs et al., 2011, 2012) that computes entity sets for
each attribute and method in the target class. All entity set elements are computed with
a distance matrix, and then a threshold value on distance 1s applied to get the cohesive
sets of attributes and methods. However, considering method-calls as a primary means
to establish cohesion might not well good in many cases and hence that may result in
mappropriate grouping. Proposed that forming cohesive attribute-set first and then
considering method-similarity as a mechanism to establish cohesion. Table (4.6) shows

a comparison to the results of approaches according to specific criteria.

Table (4.6) Comparison of Approaches

Criferis Bavota et al. Fokaefs et al Proposed
Approach Approach Approach
Number of B .y
Extracted Class 2 = e
Accuracy of
Extracted Class Low Medium High
Cohesion

37

4.6 Summary

The chapter began by designing and explained the proposed approach for extracting
large class by applying the class normalization rules (10NF, 20NF and 30ONF). Where
the approach works to take a class with many responsibilities, then produce access-set
table of attributes, and calculate the Jaccard similarity index to create attributes
similarity matrix and by calculating the values of the matrix, to the proposed classes are
created. The structural similarity matrix creates to compute the cohesion of each class,
thus achieving the third rule for normalization, so the class is behaviorally coherent or
needs re-extraction one more time. Also, it presented an example for testing the
approach and evaluated according to the results obtained. And the chapter ends in the
comparison of the results of the experiment for the approach in light of the results of
techniques of some relevant studies for others. The method showed efficiency and
ability for refactoring the large class, explaining the importance of refactoring to

enhance class quality and simple the maintenance.

CHAPTER 5: CONCLUSION & FUTURE WORK

5.1 Conclusion
This study proposed an approach to extract large class and improve its cohesion.
The approach splits the class to new classes with high cohesion without affecting in the

coupling with other classes.

The method produces an access-set table of attributes of the class to be needed
refactoring. Then, calculating the Jaccard similarity measure to create a similarity
matrix for attributes and by taking the highest similarity value of intersect attributes new
class are created with the methods that related to. Then, designing the structural
similarity matrix of each extracted class to calculate the cohesion of each class. Class
cohesion metrics, i.e. structural similarity between methods and class cohesion is

applied to class normalization rules on source code.

The method shows importance of refactoring to enhance quality of class and
simplest the maintenance. Where improves the structure of class and makes more
organizing, and from the limitation of this increase the size of software to increase the

number of classes.

5.2 Limitation of The Proposed Approach

There are some of the limitations in this research as follows:

e The application was implemented on a closed system and a specific language,
C# without indicating that 1t can be applied to other languages such as C++ and
Python.

e Using the partial keyword to keep the class as one on call and did not consider
the effect of the object-oriented concepts.

e The resulting class not be named with the responsibility name which represents,

but named with the original class name.

5.3 Future Work
The limitations mentioned previously can be addressed as future work. Moreover,

the efficiency of the proposed method can be further improved as follows:

e Apply the proposed method to other architectures where need specific changes
of the procedure of extraction refactoring according to the component's

definition of the selected architectures.

40

e Study the effect of object-oriented concepts on class extraction refactoring.

e Enhance the approach to rename the extracted classes with names related to

behaviors.

41

References

Al Dallal, J. (2012). Constructing models for predicting extract subclass refactoring
opportunities using object-oriented quality metrics. Information and Software
Technology, 54(10), 1125-1141. https://doi.org/10.1016/j.infsof.2012.04.004

Ambler, S. W. (2003). Agile database techniques: Effective strategies for the agile
software developer. Wiley.

Bavota, G., De Lucia, A., Di Penta, M., Oliveto, R., & Palomba, F. (2015). An
experimental mvestigation on the innate relationship between quality and
refactoring. Journal of Systems and Software, 107 1-14.

https://do1.org/10.1016/7.js5.2015.05.024

Bavota, G., De Lucia, A., Marcus, A., & Oliveto, R. (2014). Automating extract class

?

refactoring:. An improved method and its evaluation. Empirical Software
Engineering, 19(6), 1617-1664. https://doi.org/10.1007/s10664-013-9256-x

Bavota, G., De Lucia, A., & Oliveto, R. (2011). Identifying Extract Class refactoring
opportunities using structural and semantic cohesion measures. Journal of
Systems and Software, 84(3), 397—414. https://doi.org/10.1016/1.js5.2010.11.918

Chu, P.-H., Hsueh, N.-L., Chen, H.-H., & Liu, C.-H. (2012). A test case refactoring
approach for pattern-based software development. Software Quality Journal,
20(1), 43-75. https://do1.org/10.1007/s11219-011-9143-x

Dexun, J., Pejjun, M., Xiaohong, S., & Tiantian, W. (2014). Functional Over-Related
Classes Bad Smell Detection and Refactoring Suggestions. Infernational
Journal of Software Engineering & Applications, 5(2), 29-47.
https://do1.org/10.5121/1jsea.2014.5203

Fokaefs, M., Tsantalis, N., Stroulia, E., & Chatzigeorgiou, A. (2012). Identification and
application of Extract Class refactorings in object-oriented systems. Journal of
Systems and Software, 85(10), 2241-2260.
https://do1.org/10.1016/7.J$5.2012.04.013

Fokaefs, M., Tsantalis, N., Stroulia, E., & Chatzigeorgiou, A. (2011). JDeodorant:
Identification and application of extract class refactorings. Proceeding of the
33rd International Conference on Sofiware Engineering - ICSE 11, 1037.
https://do1.org/10.1145/1985793.1985989

Fowler, M., & Beck, K. (1999). Refactoring: Improving the design of existing code.
Addison-Wesley.

42

Gui, G., & Scott, P. D. (2008). New Coupling and Cohesion Metrics for Evaluation of
Software Component Reusability. 2008 The 9th International Conference for
Young Computer Scientists, 1181-1186.
https://do1.org/10.1109/ICYCS.2008.270

Kaur, A., & Kaur, M. (2016). Analysis of Code Refactoring Impact on Software
Quality. MATEC Web of Conferences, 57 02012.
https://doi.org/10.1051/matecconf/20165702012

Marcus, A., Poshyvanyk, D., & Ferenc, R. (2008). Using the Conceptual Cohesion of
Classes for Fault Prediction in Object-Oriented Systems. JEEE Transactions on
Software Engineering, 34(2), 287-300. https://doi.org/10.1109/TSE.2007.70768

McConnell, S. (2004). Code complete (2nd ed). Microsoft Press.

Mooij, A. J., Ketema, J., Klusener, S., & Schuts, M. (2020). Reducing Code Complexity
through Code Refactoring and Model-Based Rejuvenation. 2020 IEEE 27th
International Conference on Software Analysis, Evolution and Reengineering
(SANER), 617-621. https://doi.org/10.1109/SANER48275.2020.9054823

Morales, R., Chicano, F., Khomh, F., & Antoniol, G. (2018). Efficient refactoring

scheduling based on partial order reduction. Journal of Systems and Software,
145, 25-51. https://doi.org/10.1016/].Js5.2018.07.076

Pressman, R. S. (2010). Software engineering: A practitioner’s approach (7th ed).
McGraw-Hill Higher Education.

Sharma, T., & Murthy, P. (2014). ESA: The exclusive-similarity algorithm for
identifying extract-class refactoring candidates automatically. Proceedings of
the 7th India Software Engineering Conference on - ISEC ’I14, 1-6.
https://doi.org/10.1145/2590748.2590763

Singh, S., & Kaur, S. (2017). A systematic literature review: Refactoring for disclosing

code smells in object oriented software. Ain Shams Engineering Journal.
https://do1.org/10.1016/j.ase5.2017.03.002

Software Engineering Tutorial. (2014). Tutotorials Point (I) Pvt. Ltd.

Sommerville, 1. (2016). Software engineering (Tenth edition). Pearson.

Turkistani, B., & Liu, Y. (2019). Reducing the Large Class Code Smell by Applying
Design Patterns. 2019 IEEE International Conference on Electro Information
Technology (EIT), 590-595. https://doi.org/10.1109/EIT.2019.8833851

Zafeiris, V. E., Poulias, S. H., Diamantidis, N. A., & Giakoumakis, E. A. (2017).

Automated refactoring of super-class method invocations to the Template
Method design pattern. Information and Software Technology, 82, 19-35.
https://do1.org/10.1016/j.infsof.2016.09.008

45

List of Publications

Marwan Ahmed Lardhi, Saeed Mohammed Baneamoon, Enhanced Class Normalization
Rules for Refactoring Large Class Smell, International Journal of Innovative Science

and Research Technology (IJISRT), Vol. 5, Issue. 5, PP. 1513-1519, 2020.

44

